Abstract The West Siberian Lowland (WSL) contains some of the largest wetlands and most extensive peatlands on Earth, storing vast amounts of vulnerable carbon across permafrost‐free to continuous permafrost zones. As temperature and precipitation changes continue to alter the Siberian landscape, carbon transfer to the atmosphere and export to the Arctic Ocean will be impacted. However, the drivers of organic carbon transfer are largely unknown across this region. We characterized seasonal dissolved organic carbon (DOC) concentration and dissolved organic matter (DOM) composition of WSL rivers from the middle reaches of the Ob’ River in the permafrost‐free zone, as well as tributaries of the Taz River in the northern continuous permafrost zone. DOC and aromatic DOM properties increased from spring to autumn in the Ob’ tributaries, reflecting the seasonal transition from groundwater‐sourced to terrestrial DOM. Differences in molecular‐level signatures via ultra‐high resolution mass spectrometry revealed the influence of redox processes on DOM composition in the winter while terrestrial DOM sourcing shifted from surface litter aliphatics and highly unsaturated and phenolic high‐O/C (HUPHigh O/C) compounds in the spring to subsurface soils and HUPLow O/Ccompounds by autumn. Furthermore, aromaticity and organic N were related to landscape properties including peatlands, forest cover, and the ratio of needleleaf:broadleaf forests. Finally, the Taz River tributaries were similar to summer and autumn Ob’ tributaries, but more enriched in N and S‐containing compounds. These signatures were likely derived from thawing permafrost, which we expect to increase in northern rivers due to active layer expansion in a warming Arctic.
more »
« less
Peatlands Versus Permafrost: Landscape Features as Drivers of Dissolved Organic Matter Composition in West Siberian Rivers
Abstract West Siberia contains some of the largest soil carbon stores on Earth owing to vast areas of peatlands and permafrost, with the region warming far faster than the global average. Organic matter transported in fluvial systems is likely to undergo distinct compositional changes as peatlands and permafrost warm. However, the influence of peatlands and permafrost on future dissolved organic matter (DOM) composition is not well characterized. To better understand how these environmental drivers may impact DOM composition in warming Arctic rivers, we used ultrahigh resolution Fourier‐transform ion cyclotron resonance mass spectrometry to analyze riverine DOM composition across a latitudinal gradient of West Siberia spanning both permafrost‐influenced and permafrost‐free watersheds and varying proportions of peatland cover. We find that peatland cover explains much of the variance in DOM composition in permafrost‐free watersheds in West Siberia, but this effect is suppressed in permafrost‐influenced watersheds. DOM from warm permafrost‐free watersheds was more heterogenous, higher molecular weight, and relatively nitrogen enriched in comparison to DOM from cold permafrost‐influenced watersheds, which were relatively enriched in energy‐rich peptide‐like and aliphatic compounds. Therefore, we predict that as these watersheds warm, West Siberian rivers will export more heterogeneous DOM with higher average molecular weight than at present. Such compositional shifts have been linked to different fates of DOM in downstream ecosystems. For example, a shift toward higher molecular weight, less energy‐rich DOM may lead to a change in the fate of this material, making it more susceptible to photochemical degradation processes, particularly in the receiving Arctic Ocean.
more »
« less
- Award ID(s):
- 1917434
- PAR ID:
- 10492064
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Biogeosciences
- Volume:
- 129
- Issue:
- 2
- ISSN:
- 2169-8953
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Climate change is dramatically altering Arctic ecosystems, leading to shifts in the sources, composition, and eventual fate of riverine dissolved organic matter (DOM) in the Arctic Ocean. Here we examine a 6‐year DOM compositional record from the six major Arctic rivers using Fourier‐transform ion cyclotron resonance mass spectrometry paired with dissolved organic carbon isotope data (Δ14C, δ13C) to investigate how seasonality and permafrost influence DOM, and how DOM export may change with warming. Across the pan‐Arctic, DOM molecular composition demonstrates synchrony and stability. Spring freshet brings recently leached terrestrial DOM with a latent high‐energy and potentially bioavailable subsidy, reconciling the historical paradox between freshet DOM's terrestrial bulk signatures and high biolability. Winter features undiluted baseflow DOM sourced from old, microbially degraded groundwater DOM. A stable core Arctic riverine fingerprint (CARF) is present in all samples and may contribute to the potential carbon sink of persistent, aged DOM in the global ocean. Future warming may lead to shifting sources of DOM and export through: (1) flattening Arctic hydrographs and earlier melt modifying the timing and role of the spring high‐energy subsidy; (2) increasing groundwater discharge resulting in a greater fraction of DOM export to the ocean occurring as stable and aged molecules; and (3) increasing contribution of nitrogen/sulfur‐containing DOM from microbial degradation caused by increased connectivity between groundwater and surface waters due to permafrost thaw. Our findings suggest the ubiquitous CARF (which may contribute to oceanic carbon sequestration) underlies predictable variations in riverine DOM composition caused by seasonality and permafrost extent.more » « less
-
Peatlands, which account for approximately 15% of land surface across the arctic and boreal regions of the globe, are experiencing a range of ecological impacts as a result of climate change. Factors that include altered hydrology resulting from drought and permafrost thaw, rising temperatures, and elevated levels of atmospheric carbon dioxide have been shown to cause plant community compositional changes. Shifts in plant composition affect the productivity, species diversity, and carbon cycling of peatlands. We used hyperspectral remote sensing to characterize the response of boreal peatland plant composition and species diversity to warming, hydrologic change, and elevated CO2. Hyperspectral remote sensing techniques offer the ability to complete landscape-scale analyses of ecological responses to climate disturbance when paired with plot-level measurements that link ecosystem biophysical properties with spectral reflectance signatures. Working within two large ecosystem manipulation experiments, we examined climate controls on composition and diversity in two types of common boreal peatlands: a nutrient rich fen located at the Alaska Peatland Experiment (APEX) in central Alaska, and an ombrotrophic bog located in northern Minnesota at the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment. We found a strong effect of plant functional cover on spectral reflectance characteristics. We also found a positive relationship between species diversity and spectral variation at the APEX field site, which is consistent with other recently published findings. Based on the results of our field study, we performed a supervised land cover classification analysis on an aerial hyperspectral dataset to map peatland plant functional types (PFTs) across an area encompassing a range of different plant communities. Our results underscore recent advances in the application of remote sensing measurements to ecological research, particularly in far northern ecosystems.more » « less
-
Abstract Wetland and permafrost soils contain some of Earth's largest reservoirs of organic carbon, and these stores are threatened by rapid warming across the Arctic. Nearly half of northern wetlands are affected by permafrost. As these ecosystems warm, the cycling of dissolved organic matter (DOM) and the opportunities for microbial degradation are changing. This is particularly evident as the relationship between wetland and permafrost DOM dynamics evolves, especially with the introduction of permafrost‐derived DOM into wetland environments. Thus, understanding the interplay of DOM composition and microbial communities from wetlands and permafrost is critical to predicting the impact of released carbon on global carbon cycling. As little is understood about the interactions between wetland active layer and permafrost‐derived sources as they intermingle, we conducted experimental bioincubations of mixtures of DOM and microbial communities from two fen wetland depths (shallow: 0–15 cm, and deep: 15–30 cm) and two ages of permafrost soil (Holocene and Pleistocene). We found that the source of microbial inoculum was not a significant driver of dissolved organic carbon (DOC) degradation across treatments; rather, DOM source and specifically, DOM molecular composition, controlled the rate of DOC loss over 100 days of bioincubations. DOC loss across all treatments was negatively correlated with modified aromaticity index, O/C, and the relative abundance of condensed aromatic and polyphenolic formula, and positively correlated with H/C and the relative abundance of aliphatic and peptide‐like formula. Pleistocene permafrost‐derived DOC exhibited ∼70% loss during the bioincubation driven by its initial molecular‐level composition, highlighting its high bioavailability irrespective of microbial source.more » « less
-
Abstract We characterized the dissolved organic matter (DOM) under baseflow conditions from a set of rivers in the Mohawk and Hudson River watersheds. The rivers in this study drain a range of bedrock geologies and land cover. We identify how those factors influence riverine DOM reactivity and the source, age, and composition of the biolabile DOM. We performed laboratory incubation experiments to characterize each river's reactive and non‐reactive DOM pools. Measurements of dissolved organic carbon concentration, radiocarbon, Ultraviolet‐visible spectroscopy absorbance, and Fourier‐transform ion cyclotron resonance mass spectrometry (FTICR‐MS) analysis were performed at each incubation start and end, allowing us to determine the quantity, age, and composition of the reactive and nonreactive DOM pools. We find that lithology controls bulk DOM ages, with watersheds underlain by shale/limestone having the most aged DOM and crystalline/metasedimentary watersheds having the youngest DOM. We observe that for a given lithology, bulk DOM age increases with the proportion of agricultural land in the watershed–suggesting agricultural practices mobilize aged DOM. FTICR‐MS analysis reveals that both lithology and land cover influence DOM composition. Shale/limestone watersheds showed DOM compositions distinct from other watershed lithologies, and the percentage of nitrogen‐containing DOM correlated with agricultural influence. In two of the studied rivers we find that the biolabile DOM fraction is older than the bulk DOM (upwards of 7 kyr) revealing that aged DOM may be preferentially consumed in these rivers. Our findings provide insight into how riverine carbon cycles may respond to watershed disturbances that influence DOM inputs to rivers.more » « less
An official website of the United States government
