This content will become publicly available on December 1, 2025
The vagus nerve (VN) plays an important role in regulating physiological conditions in the gastrointestinal (GI) tract by communicating via the parasympathetic pathway to the enteric nervous system (ENS). However, the lack of knowledge in the neurophysiology of the VN and GI tract limits the development of advanced treatments for autonomic dysfunctions related to the VN. To better understand the complicated underlying mechanisms of the VN-GI tract neurophysiology, it is necessary to use an advanced device enabled by microfabrication technologies. Among several candidates including intraneural probe array and extraneural cuff electrodes, microchannel electrode array devices can be used to interface with smaller numbers of nerve fibers by securing them in the separate channel structures. Previous microchannel electrode array devices to interface teased nerve structures are relatively bulky with thickness around 200 µm. The thick design can potentially harm the delicate tissue structures, including the nerve itself. In this paper, we present a flexible thin film based microchannel electrode array device (thickness: 11.5 µm) that can interface with one of the subdiaphragmatic nerve branches of the VN in a rat. We demonstrated recording evoked compound action potentials (ECAP) from a transected nerve ending that has multiple nerve fibers. Moreover, our analysis confirmed that the signals are from C-fibers that are critical in regulating autonomic neurophysiology in the GI tract.
more » « less- Award ID(s):
- 1944480
- NSF-PAR ID:
- 10492134
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Microsystems & Nanoengineering
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2055-7434
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Abstract Autonomic nerves convey essential neural signals that regulate vital body functions. Recording clearly distinctive physiological neural signals from autonomic nerves will help develop new treatments for restoring regulatory functions. However, this is very challenging due to the small nature of autonomic nerves and the low-amplitude signals from their small axons. We developed a multi-channel, high-density, intraneural carbon fiber microelectrode array (CFMA) with ultra-small electrodes (8–9 µm in diameter, 150–250 µm in length) for recording physiological action potentials from small autonomic nerves. In this study, we inserted CFMA with up to 16 recording carbon fibers in the cervical vagus nerve of 22 isoflurane-anesthetized rats. We recorded action potentials with peak-to-peak amplitudes of 15.1–91.7 µV and signal-to-noise ratios of 2.0–8.3 on multiple carbon fibers per experiment, determined conduction velocities of some vagal signals in the afferent (0.7–4.4 m/s) and efferent (0.7–8.8 m/s) directions, and monitored firing rate changes in breathing and blood glucose modulated conditions. Overall, these experiments demonstrated that CFMA is a novel interface for in-vivo intraneural action potential recordings. This work is considerable progress towards the comprehensive understanding of physiological neural signaling in vital regulatory functions controlled by autonomic nerves.more » « less
-
Abstract Microelectrodes are widely used as a peripheral nerve interface (PNI) to connect the peripheral nerve to a computer for restoration of sensorimotor function and bionic device motion control. Materials used for implantable microelectrode are still facing the challenges from biocompatibility and bio‐fidelity in neural signal recording and nerve stimulating. In this study, we report that carbon multi‐electrode arrays (cMEAs) can be fabricated using carbon ink, micro resin dimethylsiloxane and 3D printing technology and ink for PNI. In vitro cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) demonstrated that the cMEAs have higher charge storage capacity (CSC) and less impedance than conventional platinum (Pt) electrode. In vivo studies using an animal model demonstrated that cMEAs are more effective in stimulating the nerve to elicit muscle contraction and recording compound muscle action potentials (CMAPs) than the Pt electrode. The cMEAs has lower stimulating threshold to elicit muscle activity, higher signal‐to‐noise (SNR) in CMAP. Our studies demonstrate that cMEAs can be an advanced healthcare materials in nerve signal nerve stimulation for PNI and muscle bioelectrical signal recording for peripheral muscle interface (PMI).
-
Abstract The vagus nerve supports diverse autonomic functions and behaviors important for health and survival. To understand how specific components of the vagus contribute to behaviors and long-term physiological effects, it is critical to modulate their activity with anatomical specificity in awake, freely behaving conditions using reliable methods. Here, we introduce an organ-specific scalable, multimodal, wireless optoelectronic device for precise and chronic optogenetic manipulations in vivo. When combined with an advanced, coil-antenna system and a multiplexing strategy for powering 8 individual homecages using a single RF transmitter, the proposed wireless telemetry enables low cost, high-throughput, and precise functional mapping of peripheral neural circuits, including long-term behavioral and physiological measurements. Deployment of these technologies reveals an unexpected role for stomach, non-stretch vagal sensory fibers in suppressing appetite and demonstrates the durability of the miniature wireless device inside harsh gastric conditions.
-
Abstract A MEMS‐based impedance biosensor was designed, fabricated, and tested to effectively detect the presence of bacterial cells including
E. coli O157:H7 andSalmonella typhimurium in raw chicken products using detection region made of multiple interdigitated electrode arrays. A positive dielectrophoresis based focusing electrode was used in order to focus and concentrate the bacterial cells at the centerline of the fluidic microchannel and direct them toward the detection microchannel. The biosensor was fabricated using surface micromachining technology on a glass substrate. The results demonstrate that the device can detectSalmonella with concentrations as low as 10 cells/mL in less than 1 h. The device sensitivity was improved by the addition of the focusing electrodes, which increased the signal response by a factor between 6 and 18 times higher than without the use of the focusing electrodes. The biosensor is selective and can detect other types of pathogen by changing the type of the antibody immobilized on the detection electrodes. The device was able to differentiate live from dead bacteria. -
Solid-state batteries with features of high potential for high energy density and improved safety have gained considerable attention and witnessed fast growing interests in the past decade. Significant progress and numerous efforts have been made on material discovery, interface characterizations and device fabrication. This issue of MRS Bulletin focuses on the current state of art of solid-state batteries with the most important topics related to the interface issues, advanced characterizations, and electrode chemistries, aiming to provide a comprehensive perspective for the interface and characterization challenges for high performance solid-state battery devices.more » « less