skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Hubbard Brook Experimental Forest: Watershed 3 well water level recordings, 2007 - ongoing
This dataset consists of groundwater levels measured within wells distributed across Watershed 3 at Hubbard Brook Experimental Forest from 2007-2020. Water levels are expressed as a depth (cm) from the soil surface. This dataset is a part of a larger project aimed at explaining the spatial and temporal variation in stream water chemistry at the headwater catchment scale using a framework based on the combined study of hydrology and soil development – hydropedology. The project will demonstrate how hydrology strongly influences soil development and soil chemistry, and in turn, controls stream water quality in headwater catchments. Understanding the linkages between hydrology and soil development can provide valuable information for managing forests and stream water quality. Feedbacks between soils and hydrology that lead to predictable landscape patterns of soil chemistry have implications for understanding spatial gradients in site productivity and suitability for species with differing habitat requirements or chemical sensitivity. Tools are needed that identify and predict these gradients that can ultimately provide guidance for land management and silvicultural decision making. Better integration between soil science, hydrology, and biogeochemistry will provide the conceptual leap needed by the hydrologic community to be able to better predict and explain temporal and spatial variability of stream water quality and understand water sources contributing to streamflow. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.  more » « less
Award ID(s):
1637685 2224545
PAR ID:
10492188
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The project is aimed at explaining the spatial and temporal variation in stream water chemistry at the headwater catchment scale using a framework based on the combined study of hydrology and soil development – hydropedology. The project will demonstrate how hydrology strongly influences soil development and soil chemistry, and in turn, controls stream water quality in headwater catchments. Understanding the linkages between hydrology and soil development can provide valuable information for managing forests and stream water quality. Feedbacks between soils and hydrology that lead to predictable landscape patterns of soil chemistry have implications for understanding spatial gradients in site productivity and suitability for species with differing habitat requirements or chemical sensitivity. Tools are needed that identify and predict these gradients that can ultimately provide guidance for land management and silvicultural decision making. Better integration between soil science, hydrology, and biogeochemistry will provide the conceptual leap needed by the hydrologic community to be able to better predict and explain temporal and spatial variability of stream water quality and understand water sources contributing to streamflow. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  2. These data are monthly fluxes of solutes in stream water measured in watersheds of the Hubbard Brook Experimental Forest and are a part of the Hubbard Brook Watershed Ecosystem Record (HBWatER), which is a long-term record of stream and precipitation chemistry and volume. The solute fluxes in stream water are calculated as the product of the volume of stream water and solute concentrations. There are nine gaged watersheds at the Hubbard Brook Experimental Forest, some of which have been subjected to experimental manipulations. The calculation of fluxes is currently supervised by John Campbell (US Forest Service). The long-term stream water record is collected and maintained by the US Forest Service. The collection and management of the long-term stream and precipitation chemistry record was initiated in 1963 by Gene E. Likens, F. Herbert Bormann, Robert S. Pierce, and Noye M. Johnson. HBWatER is currently sustained by Tammy Wooster (Cary IES) and Jeff Merriam (USFS) and the dataset is curated and maintained by a team of researchers: Chris Solomon (Cary IES), Emma Rosi (Cary IES), Emily Bernhardt (Duke), Lindsey Rustad (USFS), John Campbell (USFS), Bill McDowell (UNH), Charley Driscoll (Syracuse U.), Mark Green (Case Western), and Scott Bailey (USFS). Current Financial Support for HBWatER is provided by NSF LTREB # 1907683 and the USDA Forest Service Northern Research Station. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the US Forest Service, Northern Research Station. 
    more » « less
  3. These data are monthly fluxes of solutes in stream water measured in watersheds of the Hubbard Brook Experimental Forest and are a part of the Hubbard Brook Watershed Ecosystem Record (HBWatER), which is a long-term record of stream and precipitation chemistry and volume. The solute fluxes in stream water are calculated as the product of the volume of stream water and solute concentrations. There are nine gaged watersheds at the Hubbard Brook Experimental Forest, some of which have been subjected to experimental manipulations. The calculation of fluxes is currently supervised by John Campbell (US Forest Service). The long-term stream water record is collected and maintained by the US Forest Service. The collection and management of the long-term stream and precipitation chemistry record was initiated in 1963 by Gene E. Likens, F. Herbert Bormann, Robert S. Pierce, and Noye M. Johnson. HBWatER is currently sustained by Tammy Wooster (Cary IES) and Jeff Merriam (USFS) and the dataset is curated and maintained by a team of researchers: Chris Solomon (Cary IES), Emma Rosi (Cary IES), Emily Bernhardt (Duke), Lindsey Rustad (USFS), John Campbell (USFS), Bill McDowell (UNH), Charley Driscoll (Syracuse U.), Mark Green (Case Western), and Scott Bailey (USFS). Current Financial Support for HBWatER is provided by NSF LTREB # 1907683 and the USDA Forest Service Northern Research Station. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the US Forest Service, Northern Research Station. 
    more » « less
  4. These data are monthly fluxes of solutes in stream water measured in watersheds of the Hubbard Brook Experimental Forest and are a part of the Hubbard Brook Watershed Ecosystem Record (HBWatER), which is a long-term record of stream and precipitation chemistry and volume. The solute fluxes in stream water are calculated as the product of the volume of stream water and solute concentrations. There are nine gaged watersheds at the Hubbard Brook Experimental Forest, some of which have been subjected to experimental manipulations. The calculation of fluxes is currently supervised by John Campbell (US Forest Service). The long-term stream water record is collected and maintained by the US Forest Service. The collection and management of the long-term stream and precipitation chemistry record was initiated in 1963 by Gene E. Likens, F. Herbert Bormann, Robert S. Pierce, and Noye M. Johnson. HBWatER is currently sustained by Tammy Wooster (Cary IES) and Jeff Merriam (USFS) and the dataset is curated and maintained by a team of researchers: Chris Solomon (Cary IES), Emma Rosi (Cary IES), Emily Bernhardt (Duke), Lindsey Rustad (USFS), John Campbell (USFS), Bill McDowell (UNH), Charley Driscoll (Syracuse U.), Mark Green (Case Western), and Scott Bailey (USFS). Current Financial Support for HBWatER is provided by NSF LTREB # 1907683 and the USDA Forest Service Northern Research Station. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the US Forest Service, Northern Research Station. 
    more » « less
  5. These data are monthly fluxes of solutes in stream water measured in watersheds of the Hubbard Brook Experimental Forest and are a part of the Hubbard Brook Watershed Ecosystem Record (HBWatER), which is a long-term record of stream and precipitation chemistry and volume. The solute fluxes in stream water are calculated as the product of the volume of stream water and solute concentrations. There are nine gaged watersheds at the Hubbard Brook Experimental Forest, some of which have been subjected to experimental manipulations. The calculation of fluxes is currently supervised by John Campbell (US Forest Service). The long-term stream water record is collected and maintained by the US Forest Service. The collection and management of the long-term stream and precipitation chemistry record was initiated in 1963 by Gene E. Likens, F. Herbert Bormann, Robert S. Pierce, and Noye M. Johnson. HBWatER is currently sustained by Tammy Wooster (Cary IES) and Jeff Merriam (USFS) and the dataset is curated and maintained by a team of researchers: Chris Solomon (Cary IES), Emma Rosi (Cary IES), Emily Bernhardt (Duke), Lindsey Rustad (USFS), John Campbell (USFS), Bill McDowell (UNH), Charley Driscoll (Syracuse U.), Mark Green (Case Western), and Scott Bailey (USFS). Current Financial Support for HBWatER is provided by NSF LTREB # 1907683 and the USDA Forest Service Northern Research Station. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the US Forest Service, Northern Research Station. 
    more » « less