skip to main content


Title: Hubbard Brook Experimental Forest: Watershed 3 well water level recordings, 2007 - ongoing
This dataset consists of groundwater levels measured within wells distributed across Watershed 3 at Hubbard Brook Experimental Forest from 2007-2020. Water levels are expressed as a depth (cm) from the soil surface. This dataset is a part of a larger project aimed at explaining the spatial and temporal variation in stream water chemistry at the headwater catchment scale using a framework based on the combined study of hydrology and soil development – hydropedology. The project will demonstrate how hydrology strongly influences soil development and soil chemistry, and in turn, controls stream water quality in headwater catchments. Understanding the linkages between hydrology and soil development can provide valuable information for managing forests and stream water quality. Feedbacks between soils and hydrology that lead to predictable landscape patterns of soil chemistry have implications for understanding spatial gradients in site productivity and suitability for species with differing habitat requirements or chemical sensitivity. Tools are needed that identify and predict these gradients that can ultimately provide guidance for land management and silvicultural decision making. Better integration between soil science, hydrology, and biogeochemistry will provide the conceptual leap needed by the hydrologic community to be able to better predict and explain temporal and spatial variability of stream water quality and understand water sources contributing to streamflow. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station.  more » « less
Award ID(s):
1637685 2224545
NSF-PAR ID:
10492188
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The project is aimed at explaining the spatial and temporal variation in stream water chemistry at the headwater catchment scale using a framework based on the combined study of hydrology and soil development – hydropedology. The project will demonstrate how hydrology strongly influences soil development and soil chemistry, and in turn, controls stream water quality in headwater catchments. Understanding the linkages between hydrology and soil development can provide valuable information for managing forests and stream water quality. Feedbacks between soils and hydrology that lead to predictable landscape patterns of soil chemistry have implications for understanding spatial gradients in site productivity and suitability for species with differing habitat requirements or chemical sensitivity. Tools are needed that identify and predict these gradients that can ultimately provide guidance for land management and silvicultural decision making. Better integration between soil science, hydrology, and biogeochemistry will provide the conceptual leap needed by the hydrologic community to be able to better predict and explain temporal and spatial variability of stream water quality and understand water sources contributing to streamflow. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  2. This dataset documents all pedons (soil profiles) that have been located with GPS (2 meter horizontal accuracy) and have been described by genetic horizon for the Hubbard Brook Experimental Forest, within the White Mountain National Forest, NH. Soil profiles were observed between 1995 and 2022 and have been described and sampled at two levels of detail. Soil profiles in the pedon table were dug to bedrock or into the C horizon except where high boulder content limited excavation. The depth of all major soil horizons was measured and most pedons had descriptions written and physical samples collected. The horizon table contains physical observations and chemical analyses for the horizons sampled in the pedon table. Over 2500 of these horizons have had physical samples accessioned into the Hubbard Brook sample archive; the archived mass is included in the horizon table. The reconnaissance table includes pedons observed at a lower level of detail. Small pits were generally dug to a depth of 40 cm or greater, and minimal observations, as needed, were recorded to classify the soil profile by soil map unit (hpu). These data were collected to supplement the detailed observations in the previous two data tables in support of development of a spatial model of soil distribution for the entire Hubbard Brook Experimental Forest. No samples were collected from reconnaissance pits. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  3. Abstract

    Ecosystems constantly adjust to altered biogeochemical inputs, changes in vegetation and climate, and previous physical disturbances. Such disturbances create overlapping ‘biogeochemical legacies’ affecting modern nutrient mass balances. To understand how ‘legacies’ affected watershed‐ecosystem (WEC) biogeochemistry during five decades of studies within the Hubbard Brook Experimental Forest (HBEF), we extended biogeochemical trends and hydrologic fluxes back to 1900 to provide an historical framework for our long‐term studies. This reconstruction showed acid rain peaking at HBEF in the late 1960s‐early 1970s near the beginning of the Hubbard Brook Ecosystem Study (HBES). The long‐term, parabolic arc in acid inputs to HBEF generated a corresponding arc in the ionic strength of stream water, with acid inputs generating increased losses of H+and soil base cations between 1963 and 1969 and then decreased losses after 1970. Nitrate release after disturbance is coupled with previous N‐deposition and storage, biological uptake, and hydrology. Sulfur was stored in soils from decades of acid deposition but is now nearly depleted. Total exports of base cations from the soil exchange pool represent one of the largest disturbances to forest and associated aquatic ecosystems at the HBEF since the Pleistocene glaciation. Because precipitation inputs of base cations currently are extremely small, such losses can only be replaced through the slow process of mineral weathering. Thus, the chemistry of stream water is extremely dilute and likely to become even more dilute than pre‐Industrial Revolution estimates. The importance of calculating chemical fluxes is clearly demonstrated in reconstruction of acid rain impacts during the pre‐measurement period. The aggregate impact of acid rain on WEC exports is far larger than historical forest harvest effects, and even larger than the most severe deforestation experiment (Watershed 2) at HBEF. A century of acid rain had a calcium stripping impact equivalent totwoW2 experiments involving complete deforestation and herbicide applications.

     
    more » « less
  4. Abstract

    The Hubbard Brook Experimental Forest (HBEF) was established in 1955 by the U.S. Department of Agriculture, Forest Service out of concerns about the effects of logging increasing flooding and erosion. To address this issue, within the HBEF hydrological and micrometeorological monitoring was initiated in small watersheds designated for harvesting experiments. The Hubbard Brook Ecosystem Study (HBES) originated in 1963, with the idea of using the small watershed approach to study element fluxes and cycling and the response of forest ecosystems to disturbances, such as forest management practices and air pollution. Early evidence of acid rain was documented at the HBEF and research by scientists at the site helped shape acid rain mitigation policies. New lines of investigation at the HBEF have built on the long legacy of watershed research resulting in a shift from comparing inputs and outputs and quantifying pools and fluxes to a more mechanistic understanding of ecosystem processes within watersheds. For example, hydropedological studies have shed light on linkages between hydrologic flow paths and soil development that provide valuable perspective for managing forests and understanding stream water quality. New high frequency in situ stream chemistry sensors are providing insights about extreme events and diurnal patterns that were indiscernible with traditional weekly sampling. Additionally, tools are being developed for visual and auditory data exploration and discovery by a broad audience. Given the unprecedented environmental change that is occurring, data from the small watersheds at the HBEF are more relevant now than ever and will continue to serve as a basis for sound environmental decision‐making.

     
    more » « less
  5. These data are monthly fluxes of solutes in stream water measured in watersheds of the Hubbard Brook Experimental Forest and are a part of the Hubbard Brook Watershed Ecosystem Record (HBWatER), which is a long-term record of stream and precipitation chemistry and volume. The solute fluxes in stream water are calculated as the product of the volume of stream water and solute concentrations. There are nine gaged watersheds at the Hubbard Brook Experimental Forest, some of which have been subjected to experimental manipulations. The calculation of fluxes is currently supervised by John Campbell (US Forest Service). The long-term stream water record is collected and maintained by the US Forest Service. The collection and management of the long-term stream and precipitation chemistry record was initiated in 1963 by Gene E. Likens, F. Herbert Bormann, Robert S. Pierce, and Noye M. Johnson. HBWatER is currently sustained by Tammy Wooster (Cary IES) and Jeff Merriam (USFS) and the dataset is curated and maintained by a team of researchers: Emma Rosi (Cary IES), Emily Bernhardt (Duke), Lindsey Rustad (USFS), John Campbell (USFS), Bill McDowell (UNH), Charley Driscoll (Syracuse U.), Mark Green (Case Western), and Scott Bailey (USFS). Current Financial Support for HBWatER is provided by NSF LTREB # 1907683 and the USDA Forest Service Northern Research Station. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the US Forest Service, Northern Research Station. 
    more » « less