skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Continuous Synthesis of Nanoscale Emulsions by Vapor Condensation (EVC)
Abstract Emulsions are widely used in many industrial applications, and the development of efficient techniques for synthesizing them is a subject of ongoing research. Vapor condensation is a promising method for energy‐efficient, high‐throughput production of monodisperse nanoscale emulsions. However, previous studies using this technique are limited to producing small volumes of water‐in‐oil dispersions. In this work, a new method for the continuous synthesis of nanoscale emulsions (water‐in‐oil and oil‐in‐water) is presented by condensing vapor on free‐flowing surfactant solutions. The viability of oil vaporization and condensation is demonstrated under mild heating/cooling using diverse esters, terpenes, aromatic hydrocarbons, and alkanes. By systematically investigating water vapor and oil vapor condensation dynamics on bulk liquid‐surfactant solutions, a rich diversity of outcomes, including floating films, nanoscale drops, and hexagonally packed microdrops is uncovered. It is demonstrated that surfactant concentration impacts oil spreading, self‐emulsification, and such behavior can aid in the emulsification of condensed oil drops. This work represents a critical step toward advancing the vapor condensation method's applications for emulsions and colloidal systems, with broad implications for various fields and the development of new emulsion‐based products and industrial processes.  more » « less
Award ID(s):
1847627
PAR ID:
10492238
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Volume:
11
Issue:
15
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Separating oil-water mixtures is critical in a variety of practical applications, including the treatment of industrial wastewater, oil spill cleanups, as well as the purification of petroleum products. Among various methodologies that have been utilized, membranes are the most attractive technology for separating oil-water emulsions. In recent years, selective wettability membranes have attracted particular attention for oil-water separations. The membrane surfaces with hydrophilic and in-air oleophobic wettability have demonstrated enhanced effectiveness for oil-water separations in comparison with underwater oleophobic membranes. However, developing a hydrophilic and in-air oleophobic surface for a membrane is not a trivial task. The coating delamination process is a critical challenge when applying these membranes for separations. Inspired by the above, in this study we utilize poly(ethylene glycol)diacrylate (PEGDA) and 1H,1H,2H,2H-heptadecafluorodecyl acrylate (F-acrylate) to fabricate a hydrophilic and in-air oleophobic coating on a filter. We utilize methacryloxypropyl trimethoxysilane (MEMO) as an adhesion promoter to enhance the adhesion of the coating to the filter. The filter demonstrates robust oil repellency preventing oil adhesion and oil fouling. Utilizing the filter, gravity-driven and continuous separations of surfactant-stabilized oil-water emulsions are demonstrated. Finally, we demonstrate that the filter can be reused multiple times upon rinsing for further oil-water separations. 
    more » « less
  2. Abstract Membrane‐based technologies are attractive for remediating oily wastewater because they are relatively energy‐efficient and are applicable to a wide range of industrial effluents. For complete treatment of oily wastewater, removing dissolved contaminants from the water phase is typically followed by adsorption onto an adsorbent, which complicates the process. Here, an in‐air superhydrophilic and underwater superoleophobic membrane‐based continuous separation of surfactant‐stabilized oil‐in‐water emulsions and in situ decontamination of water by visible‐light‐driven photocatalytic degradation of dissolved organic contaminants is reported. The membrane is fabricated by utilizing a thermally sensitized stainless steel mesh coated with visible light absorbing iron‐doped titania nanoparticles. Post annealing of the membrane can enhance the adhesion of nanoparticles to the membrane surface by formation of a bridge between them. An apparatus that enables continuous separation of surfactant‐stabilized oil‐in‐water emulsion and in situ photocatalytic degradation of dissolved organic matter in the water‐rich permeate upon irradiation of visible light on the membrane surface with greater than 99% photocatalytic degradation is developed. The membrane demonstrates the recovery of its intrinsic water‐rich permeate flux upon continuous irradiation of light after being contaminated with oil. Finally, continuous oil−water separation and in situ water decontamination is demonstrated by photocatalytically degrading model toxins in water‐rich permeate. 
    more » « less
  3. This work examines the functional dependence of the efficiency of separation of oil−water emulsions on surfactant adsorption abilities of high surface area polymer gels. The work also develops an understanding of the factors and steps that are involved in emulsion separation processes using polymer gels. The work considers four polymer gels offering different surface energy values, namely, syndiotactic polystyrene (sPS), polyimide (PI), polyurea (PUA), and silica. The data reveal that surfactant adsorption abilities directly control the emulsion separation performance. The gels of sPS and PI destabilize the emulsions due to significant surfactant adsorption. The surfactant-lean oil droplets are then absorbed in the pores of sPS and PI gels due to the preferential wettability of the oil phase. The PUA and silica gels are more hydrophilic and show a lower surfactant adsorption ability. These gels cannot effectively remove the surfactant molecules from the emulsions, leading to a poor emulsion separation performance. The study uses simulation data to understand the adsorption characteristics of two poly(ethylene oxide)- poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants. The simulation results are used for the interpretation of emulsion separation performance by the gels. 
    more » « less
  4. Dropwise condensation is well known to result in better heat transfer performance owing to efficient condensate/droplet removal, which can be harnessed in various industrial heat/mass transfer applications such as power generation and conversion, water harvesting/desalination, and electronics thermal management. The key to enhancing condensation via the dropwise mode is thin low surface energy coatings (<100 nm) with low contact angle hysteresis. Ultrathin (<5 nm) silane self assembled monolayers (or SAMs) have been widely studied to promote dropwise condensation due to their minimal thermal resistance and scalable integration processes. Such thin coatings typically degrade within an hour during condensation of water vapor. After coating failure, water vapor condensation transitions to the inefficient filmwise mode with poor heat transfer performance. We enhance silane SAM quality and durability during water vapor condensation on copper compared to state of the art silane coatings on metal surfaces. We achieve this via (i) surface polishing to sub-10 nm levels, (ii) pure oxygen plasma surface treatment, and (iii) silane coating integration with the copper substrate in an anhydrous/moisture-free environment. The resulting silane SAM has low contact angle hysteresis (≈20°) and promotes efficient dropwise condensation of water for >360 hours without any visible sign of coating failure/degradation in the absence of non condensable gases. We further demonstrate enhanced heat transfer performance (≈5 7× increase over filmwise condensation) over an extended period of time. Surface characterization data post-condensation leads us to propose that in the absence of non-condensable gases in the vapor environment, the silane SAM degrades due to reduction and subsequent dissolution of copper oxide at the oligomer-substrate interface. The experiments also indicate that the magnitude of surface subcooling (or condensation rate) affects the rate of coating degradation. This work identifies a pathway to durable dropwise promoter coatings that will enable efficient heat transfer in industrial applications. 
    more » « less
  5. Interface between two immiscible electrolyte solutions (ITIES) is a powerful platform for chemical sensing and studying electron/ion transfer reactions and is typically formed between the interface of two immiscible solutions such as an oil phase and an aqueous phase. Micro/nano ITIES interface are generally formed at the tip of a borosilicate/quartz pipette, inner surface of which can be rendered hydrophobic to be filled with an organic solvent by a method called silanization. Nano/micrometer-sized electrodes are typically silanized by vapor silanization methods in which silanizing agent in vapor phase is exposed to nanopipettes. Micrometer-sized pipettes have been also silanized by directly filling liquid silanization agent, one type of liquid silanization methods, but this method has not been used at the nanoscale. Liquid silanization method allows to selectively silanize a single channel in a dual-channel pipette platform. Here, we developed the liquid silanization method for nanoscale ITIES and demonstrated that a stable cyclic voltammogram for tetrabutylammonium ion transfer across water/dichloroethane interface can be accomplished. We also presented challenges for liquid silanization at the nanoscale and strategies to overcome them. The liquid silanization methods presented here lay the foundation for future development of dual channel multi-functional probe where one channel is nanoITIES. 
    more » « less