skip to main content

This content will become publicly available on February 23, 2025

Title: Artificial Antigen‐Presenting Cell Fabrication for Murine T Cell Expansion

Antigen‐presenting cells (APCs), such as dendritic cells and macrophages, have a unique ability to survey the body and present information to T cells via peptide‐loaded major histocompatibility complexes (signal 1). This presentation, along with a co‐stimulatory signal (signal 2), leads to activation and subsequent expansion of T cells. This process can be harnessed and utilized for therapeutic applications, but the use of patient‐derived APCs can be complex and inefficient. Alternatively, artificial APCs (aAPCs) provide a simplified method to achieve T cell activation by presenting the two necessary stimulatory signals. This protocol describes the utilization of magnetic nanoparticles and stimulatory proteins to create aAPCs that can be employed for activating and expanding antigen‐specific T cells for both basic and translational immunology and immunotherapy studies. © 2024 Wiley Periodicals LLC.

Basic Protocol 1: Protein and particle modification for aAPC fabrication

Basic Protocol 2: aAPC validation by immunolabeling of conjugated protein

Support Protocol 1: Quantification of aAPC stock concentration

Basic Protocol 3: Determination of aAPC usage for murine CD8+T cell activation

Support Protocol 2: Isolation of murine CD8+T cells

more » « less
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Current Protocols
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Cross‐presentation was first observed serendipitously in the 1970s. The importance of it was quickly realized and subsequently attracted great attention from immunologists. Since then, our knowledge of the ability of certain antigen presenting cells to internalize, process, and load exogenous antigens onto MHC‐I molecules to cross‐prime CD8+T cells has increased significantly. Dendritic cells (DCs) are exceptional cross‐presenters, thus making them a great tool to study cross‐presentation but the relative rarity of DCs in circulation and in tissues makes it challenging to isolate sufficient numbers of cells to study this process in vitro. In this paper, we describe in detail two methods to culture DCs from bone‐marrow progenitors and a method to expand the numbers of DCs present in vivo as a source of endogenous bona‐fide cross‐presenting DCs. We also describe methods to assess cross‐presentation by DCs using the activation of primary CD8+T cells as a readout. © 2020 Wiley Periodicals LLC.

    Basic Protocol 1: Isolation of bone marrow progenitor cells

    Basic Protocol 2: In vitro differentiation of dendritic cells with GM‐CSF

    Support Protocol 1: Preparation of conditioned medium from GM‐CSF producing J558L cells

    Basic Protocol 3: In vitro differentiation of dendritic cells with Flt3L

    Support Protocol 2: Preparation of Flt3L containing medium from B16‐Flt3L cells

    Basic Protocol 4: Expansion of cDC1s in vivo for use in ex vivo experiments

    Basic Protocol 5: Characterizing resting and activated dendritic cells

    Basic Protocol 6: Dendritic cell stimulation, antigenic cargo, and fixation

    Support Protocol 3: Preparation of model antigen coated microbeads

    Support Protocol 4: Preparation of apoptotic cells

    Support Protocol 5: Preparation of recombinant bacteria

    Basic Protocol 7: Immunocytochemistry immunofluorescence (ICC/IF)

    Support Protocol 6: Preparation of Alcian blue‐coated coverslips

    Basic Protocol 8: CD8+T cell activation to assess cross‐presentation

    Support Protocol 7: Isolation and labeling of CD8+T cells with CFSE

    more » « less
  2. Abstract

    In this invited article, we explain technical aspects of the lymphocytic choriomeningitis virus (LCMV) system, providing an update of a prior contribution by Matthias von Herrath and J. Lindsay Whitton. We provide an explanation of the LCMV infection models, highlighting the importance of selecting an appropriate route and viral strain. We also describe how to quantify virus‐specific immune responses, followed by an explanation of useful transgenic systems. Specifically, our article will focus on the following protocols. © 2020 Wiley Periodicals LLC.

    Basic Protocol 1: LCMV infection routes in mice

    Support Protocol 1: Preparation of LCMV stocks


    Support Protocol 2: Plaque assay

    Support Protocol 3: Immunofluorescence focus assay (IFA) to measure LCMV titer


    Basic Protocol 2: Triple tetramer staining for detection of LCMV‐specific CD8 T cells

    Basic Protocol 3: Intracellular cytokine staining (ICS) for detection of LCMV‐specific T cells

    Basic Protocol 4: Enumeration of direct ex vivo LCMV‐specific antibody‐secreting cells (ASC)

    Basic Protocol 5: Limiting dilution assay (LDA) for detection of LCMV‐specific memory B cells

    Basic Protocol 6: ELISA for quantification of LCMV‐specific IgG antibody

    Support Protocol 4: Preparation of splenic lymphocytes

    Support Protocol 5: Making BHK21‐LCMV lysate

    Basic Protocol 7: Challenge models


    Basic Protocol 8: Transfer of P14 cells to interrogate the role of IFN‐I on CD8 T cell responses

    Basic Protocol 9: Comparing the expansion of naïve versus memory CD4 T cells following chronic viral challenge

    more » « less
  3. Abstract

    Allograft Inflammatory Factor-1 (AIF1) is a cytoplasmic scaffold protein that contains Ca2+ binding EF-hand and PDZ interaction domains important for mediating intracellular signaling complexes in immune cells. The protein plays a dominant role in both macrophage- and dendritic cell (DC)-mediated inflammatory responses. This study now reports that AIF1 expression in DC is important in directing CD8+ T cell effector responses. Silencing AIF1 expression in murine CD11c+ DC suppressed antigen-specific CD8+ T cell activation, marked by reduced CXCR3, IFNγ and Granzyme B expression, and restrained proliferation. These primed CD8+ T cells had impaired cytotoxic killing of target cells in vitro. In turn, studies identified that AIF1 silencing in DC robustly expanded IL-10 producing CD8+ CD122+ PD-1+ regulatory T cells that suppressed neighboring immune effector responses through both IL-10 and PD-1-dependent mechanisms. In vivo studies recapitulated bystander suppression of antigen-responsive CD4+ T cells by the CD8+ Tregs expanded from the AIF1 silenced DC. These studies further demonstrate that AIF1 expression in DC serves as a potent governor of cognate T cell responses and present a novel target for engineering tolerogenic DC-based immunotherapies.

    Adaptive immune responses are impaired in CD8+ T cells primed by DC silenced for AIF1.

    more » « less
  4. Abstract

    T cell therapies require the removal and culture of T cells ex vivo to expand several thousand‐fold. However, these cells often lose the phenotype and cytotoxic functionality for mediating effective therapeutic responses. The extracellular matrix (ECM) has been used to preserve and augment cell phenotype; however, it has not been applied to cellular immunotherapies. Here, a hyaluronic acid (HA)‐based hydrogel is engineered to present the two stimulatory signals required for T‐cell activation—termed an artificial T‐cell stimulating matrix (aTM). It is found that biophysical properties of the aTM—stimulatory ligand density, stiffness, and ECM proteins—potentiate T cell signaling and skew phenotype of both murine and human T cells. Importantly, the combination of the ECM environment and mechanically sensitive TCR signaling from the aTM results in a rapid and robust expansion of rare, antigen‐specific CD8+ T cells. Adoptive transfer of these tumor‐specific cells significantly suppresses tumor growth and improves animal survival compared with T cells stimulated by traditional methods. Beyond immediate immunotherapeutic applications, demonstrating the environment influences the cellular therapeutic product delineates the importance of the ECM and provides a case study of how to engineer ECM‐mimetic materials for therapeutic immune stimulation in the future.

    more » « less
  5. Abstract

    Biomaterial properties that modulate T cell activation, growth, and differentiation are of significant interest in the field of cellular immunotherapy manufacturing. In this work, a new platform technology that allows for the modulation of various activation particle design parameters important for polyclonal T cell activation is presented. Artificial antigen presenting cells (aAPCs) are successfully created using supported lipid bilayers on various cell‐templated silica microparticles with defined membrane fluidity and stimulating antibody density. This panel of aAPCs is used to probe the importance of activation particle shape, size, membrane fluidity, and stimulation antibody density on T cell outgrowth and differentiation. All aAPC formulations are able to stimulate T cell growth, and preferentially promote CD8+T cell growth over CD4+T cell growth when compared to commercially available pendant antibody‐conjugated particles. T cells cultured with HeLa‐ and red blood cell–templated aAPCs have a less‐differentiated and less‐exhausted phenotype than those cultured with spherical aAPCs with matched membrane coatings when cultured for 14 days. These results support continued exploration of silica‐supported lipid bilayers as an aAPC platform.

    more » « less