Abstract Hybrid magnonic systems are a newcomer for pursuing coherent information processing owing to their rich quantum engineering functionalities. One prototypical example is hybrid magnonics in antiferromagnets with an easy-plane anisotropy that resembles a quantum-mechanically mixed two-level spin system through the coupling of acoustic and optical magnons. Generally, the coupling between these orthogonal modes is forbidden due to their opposite parity. Here we show that the Dzyaloshinskii–Moriya-Interaction (DMI), a chiral antisymmetric interaction that occurs in magnetic systems with low symmetry, can lift this restriction. We report that layered hybrid perovskite antiferromagnets with an interlayer DMI can lead to a strong intrinsic magnon-magnon coupling strength up to 0.24 GHz, which is four times greater than the dissipation rates of the acoustic/optical modes. Our work shows that the DMI in these hybrid antiferromagnets holds promise for leveraging magnon-magnon coupling by harnessing symmetry breaking in a highly tunable, solution-processable layered magnetic platform.
more »
« less
Nano-Magnonic Crystals by Periodic Modulation of Magnetic Parameters
Magnonic crystals are metamaterials whose magnon behavior can be controlled for specific applications. To date, most magnonic crystals have relied on nanopatterning and magnetostatic waves. Here, we analytically and numerically investigate magnonic crystals defined by modulating magnetic parameters at the nanoscale, which predominantly act on exchange-dominated, sub-100 nm magnons. We focus on two cases: the variation in the exchange constant, and the DMI constant. We found that the exchange constant modulation gives rise to modest band gaps in the forward volume wave and surface wave configurations. The modulation of the DMI constant was found to have little effect on the magnonic band structure, leading instead to a behavior expected for unpatterned thin films. We believe that our results will be interesting for future experimental investigations of nano-designed magnonic crystals and magnonic devices, where material parameters can be locally controlled, e.g., by thermal nano-lithography.
more »
« less
- Award ID(s):
- 2205796
- PAR ID:
- 10492348
- Editor(s):
- Federico Montoncello
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Magnetochemistry
- Volume:
- 10
- Issue:
- 3
- ISSN:
- 2312-7481
- Page Range / eLocation ID:
- 14
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In the physical description of photonic lattices, leaky-mode resonance and bound states in the continuum are central concepts. Understanding of their existence conditions and dependence on lattice parameters is of fundamental interest. Primary leaky-wave effects are associated with the second stop band at the photonic lattice Γ point. The pertinent band gap is defined by the frequency difference between the leaky-mode band edge and the bound-state edge. This paper address the polarization properties of the band gaps resident in laterally periodic one-dimensional photonic lattices. We show that the band gaps pertinent to TM and TE leaky modes exhibit significantly differentiated evolution as the lattice parameters vary. This is because the TM band gap is governed by a surface effect due to the discontinuity of the dielectric constant at the interfaces of the photonic lattice as well as by a Bragg effect due to the periodic in-plane dielectric constant modulation. We find that when the lattice is thin (thick), the surface (Bragg) effect dominates the Bragg (surface) effect in the formation of the TM band. This leads to complex TM band dynamics with multiple band closures possible under parametric variation. In complete contrast, the TE band gap is governed only by the Bragg effect thus exhibiting simpler band dynamics. This research elucidates the important effect of polarization on resonant leaky-mode band dynamics whose explanation has heretofore not been available.more » « less
-
The novel concept of degenerate band edge (DBE) has been recently proposed by Figotin et al., in the framework of their study of slow wave propagation in photonic crystals [1]. The degenerate band edge is a special dispersion condition near the edge of the Brillouin zone ( kd=π/p, p is the spatial period) where four degenerate Bloch modes coalesce at a same frequency fd (two propagating modes and two evanescent modes). The dispersion relation is locally described by a quartic curve f−fd=−α(k−kd) where fd is the DBE frequency and α is a positive constant that depends on the parameters of the structure.more » « less
-
We show how, by changing the polarization value of ferroelectric domains, it is possible to tune the magnon conductivity in the ferromagnetic film layer of a multiferroic magnonic system. In particular, we suggest how to switch from a metal behavior (zero frequency gap and linear frequency-wavevector dispersion) to an insulator behavior (around 1 GHz frequency gap and parabolic dispersion). The ferroelectric film is prepared with a sequence of ferroelectric domains with a periodic variation of their polarization direction. Through inverse magnetostriction, they induce in the ferromagnetic layer a periodic magnetic anisotropy and a consequent sinusoidal magnetization. The amplitude of the sinusoidal magnetization can be varied by varying the induced magnetic anisotropy. This allows for a fine and reversible control over the curvature of the dispersion relations at the Brillouin zone boundary, as well as the width of the frequency gap. We suggest the extension of Dirac’s magnon picture to our system, finding interesting implications in terms of magnon mobility. This work expands the possible implementations of the voltage-controlled-bandgap meta-materials, marks the conditions for the occurrence of a magnonic metal behavior in a ferromagnetic film, and outlines how a same unpatterned film can be reversibly turned from a magnonic metal to a magnonic insulator.more » « less
-
Abstract Implementation of skyrmion based energy efficient and high-density data storage devices requires aggressive scaling of skyrmion size. Ferrimagnetic materials are considered to be a suitable platform for this purpose due to their low saturation magnetization (i.e. smaller stray field). However, this method of lowering the saturation magnetization and scaling the lateral size of skyrmions is only applicable where the skyrmions have a smaller lateral dimension compared to the hosting film. Here, we show by performing rigorous micromagnetic simulation that the size of skyrmions, which have lateral dimension comparable to their hosting nanodot can be scaled by increasing saturation magnetization. Also, when the lateral dimension of nanodot is reduced and thereby the skyrmion confined in it is downscaled, there remains a challenge in forming a stable skyrmion with experimentally observed Dzyaloshinskii–Moriya interaction (DMI) values since this interaction has to facilitate higher canting per spin to complete a 360° rotation along the diameter. In our study, we found that skyrmions can be formed in 20 nm lateral dimension nanodots with high saturation magnetization (1.30–1.70 MA/m) and DMI values (~ 3 mJ/m 2 ) that have been reported to date. This result could stimulate experiments on implementation of highly dense skyrmion devices. Additionally, using this, we show that voltage controlled magnetic anisotropy based switching mediated by an intermediate skyrmion state can be achieved in the soft layer of a ferromagnetic p-MTJ of lateral dimensions 20 nm with sub 1 fJ/bit energy in the presence of room temperature thermal noise with reasonable DMI ~ 3 mJ/m 2 .more » « less
An official website of the United States government

