Abstract. Localization is widely used in data assimilation schemes to mitigate the impact of sampling errors on ensemble-derived background error covariance matrices. Strongly coupled data assimilation allows observations in one component of a coupled model to directly impact another component through the inclusion of cross-domain terms in the background error covariance matrix.When different components have disparate dominant spatial scales, localization between model domains must properly account for the multiple length scales at play. In this work, we develop two new multivariate localization functions, one of which is a multivariate extension of the fifth-order piecewise rational Gaspari–Cohn localization function; the within-component localization functions are standard Gaspari–Cohn with different localization radii, while the cross-localization function is newly constructed. The functions produce positive semidefinite localization matrices which are suitable for use in both Kalman filters and variational data assimilation schemes. We compare the performance of our two new multivariate localization functions to two other multivariate localization functions and to the univariate and weakly coupled analogs of all four functions in a simple experiment with the bivariate Lorenz 96 system. In our experiments, the multivariate Gaspari–Cohn function leads to better performance than any of the other multivariate localization functions.
more »
« less
A generalized, compactly supported correlation function for data assimilation applications
This work introduces a new, compactly supported correlation function that can be inhomogeneous over Euclidean three‐space, anisotropic when restricted to the sphere, and compactly supported on regions other than spheres of fixed radius. This function, which we call the Generalized Gaspari–Cohn (GenGC) correlation function, is a generalization of the compactly supported, piecewise rational approximation to a Gaussian introduced by Gaspari and Cohn in 1999 and its subsequent extension by Gaspariet alin 2006. The GenGC correlation function is a parametric correlation function that allows two parameters and to vary, as functions, over space, whereas the earlier formulations either keep both and fixed or only allow to vary. Like these earlier formulations, GenGC is a sixth‐order piecewise rational function (fifth‐order near the origin), while the coefficients now depend explicitly on the values of both and at each pair of points being correlated. We show that, by allowing both and to vary, the correlation length of GenGC also varies over space and introduces inhomogeneous and anisotropic features that may be useful in data assimilation applications. Covariances produced using GenGC are computationally tractable due to their compact support and have the added flexibility of generating compact support regions that adapt to the input field. These features can be useful for covariance modeling and covariance tapering applications in data assimilation. We derive the GenGC correlation function using convolutions, discuss continuity properties relating to and and its correlation length, and provide one‐ and two‐dimensional examples that highlight its anisotropy and variable regions of compact support.
more »
« less
- Award ID(s):
- 1848544
- PAR ID:
- 10492364
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Quarterly Journal of the Royal Meteorological Society
- Volume:
- 149
- Issue:
- 754
- ISSN:
- 0035-9009
- Page Range / eLocation ID:
- 1953 to 1989
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Data assimilation methods often also employ the same discrete dynamical model used to evolve the state estimate in time to propagate an approximation of the state estimation error covariance matrix. Four‐dimensional variational methods, for instance, evolve the covariance matrix implicitly via discrete tangent linear dynamics. Ensemble methods, while not forming this matrix explicitly, approximate its evolution at low rank from the evolution of the ensemble members. Such approximate evolution schemes for the covariance matrix imply an approximate evolution of the estimation error variances along its diagonal. For states that satisfy the advection equation, the continuity equation, or related hyperbolic partial differential equations (PDEs), the estimation error variance itself satisfies a known PDE, so the accuracy of the various approximations to the variances implied by the discrete covariance propagation can be determined directly. Experiments conducted by the atmospheric chemical constituent data assimilation community have indicated that such approximate variance evolution can be highly inaccurate. Through careful analysis and simple numerical experiments, we show that such poor accuracy must be expected, due to the inherent nature of discrete covariance propagation, coupled with a special property of the continuum covariance dynamics for states governed by these types of hyperbolic PDE. The intuitive explanation for this inaccuracy is that discrete covariance propagation involves approximating diagonal elements of the covariance matrix with combinations of off‐diagonal elements, even when there is a discontinuity in the continuum covariance dynamics along the diagonal. Our analysis uncovers the resulting error terms that depend on the ratio of the grid spacing to the correlation length, and these terms become very large when correlation lengths begin to approach the grid scale, for instance, as gradients steepen near the diagonal. We show that inaccurate variance evolution can manifest itself as both spurious loss and gain of variance.more » « less
-
A realization is a triple, (A,b,c), consisting of a d−tuple, A=(A1,⋯,Ad), d∈N, of bounded linear operators on a separable, complex Hilbert space, H, and vectors b,c∈H. Any such realization defines an analytic non-commutative (NC) function in an open neighbourhood of the origin, 0:=(0,⋯,0), of the NC universe of d−tuples of square matrices of any fixed size. For example, a univariate realization, i.e., where A is a single bounded linear operator, defines a holomorphic function of a single complex variable, z, in an open neighbourhood of the origin via the realization formula b∗(I−zA)−1c . It is well known that an NC function has a finite-dimensional realization if and only if it is a non-commutative rational function that is defined at 0 . Such finite realizations contain valuable information about the NC rational functions they generate. By extending to infinite-dimensional realizations, we construct, study and characterize more general classes of analytic NC functions. In particular, we show that an NC function is (uniformly) entire if and only if it has a jointly compact and quasinilpotent realization. Restricting our results to one variable shows that a formal Taylor series extends globally to an entire or meromorphic function in the complex plane, C, if and only if it has a realization whose component operator is compact and quasinilpotent, or compact, respectively. This motivates our definition of the field of global (uniformly) meromorphic NC functions as the field of fractions generated by NC rational expressions in the ring of NC functions with jointly compact realizations. This definition recovers the field of meromorphic functions in C when restricted to one variable.more » « less
-
We start with a brief survey on the Hoeffding kernels, its properties, related spectral decompositions, and discuss marginal distributions of Hoeffding measures. In the second part of this note, one dimensional covariance representations are considered over compactly supported probability distributions in the class of periodic smooth functions. Hoeffding’s kernels are used in the construction of mixing measures whose marginals are multiples of given probability distributions, leading to optimal kernels in periodic covariance representations.more » « less
-
null (Ed.)Let [Formula: see text] be a convex function satisfying [Formula: see text], [Formula: see text] for [Formula: see text], and [Formula: see text]. Consider the unique entropy admissible (i.e. Kružkov) solution [Formula: see text] of the scalar, 1-d Cauchy problem [Formula: see text], [Formula: see text]. For compactly supported data [Formula: see text] with bounded [Formula: see text]-variation, we realize the solution [Formula: see text] as a limit of front-tracking approximations and show that the [Formula: see text]-variation of (the right continuous version of) [Formula: see text] is non-increasing in time. We also establish the natural time-continuity estimate [Formula: see text] for [Formula: see text], where [Formula: see text] depends on [Formula: see text]. Finally, according to a theorem of Goffman–Moran–Waterman, any regulated function of compact support has bounded [Formula: see text]-variation for some [Formula: see text]. As a corollary we thus have: if [Formula: see text] is a regulated function, so is [Formula: see text] for all [Formula: see text].more » « less
An official website of the United States government

