Bayesian data analysis is increasingly used in ecology, but prior specification remains focused on choosing non‐informative priors (e.g., flat or vague priors). One barrier to choosing more informative priors is that priors must be specified on model parameters (e.g., intercepts, slopes, and sigmas), but prior knowledge often exists on the level of the response variable. This is particularly true for common models in ecology, like generalized linear mixed models that have a link function and potentially dozens of parameters, each of which needs a prior distribution. We suggest that this difficulty can be overcome by simulating from the prior predictive distribution and visualizing the results on the scale of the response variable. In doing so, some common choices for non‐informative priors on parameters can easily be seen to produce biologically impossible values of response variables. Such implications of prior choices are difficult to foresee without visualization. We demonstrate a workflow for prior selection using simulation and visualization with two ecological examples (predator–prey body sizes and spider responses to food competition). This approach is not new, but its adoption by ecologists will help to better incorporate prior information in ecological models, thereby maximizing one of the benefits of Bayesian data analysis.
This content will become publicly available on January 30, 2025
In this paper, we propose a sparse Bayesian procedure with global and local (GL) shrinkage priors for the problems of variable selection and classification in high‐dimensional logistic regression models. In particular, we consider two types of GL shrinkage priors for the regression coefficients, the horseshoe (HS) prior and the normal‐gamma (NG) prior, and then specify a correlated prior for the binary vector to distinguish models with the same size. The GL priors are then combined with mixture representations of logistic distribution to construct a hierarchical Bayes model that allows efficient implementation of a Markov chain Monte Carlo (MCMC) to generate samples from posterior distribution. We carry out simulations to compare the finite sample performances of the proposed Bayesian method with the existing Bayesian methods in terms of the accuracy of variable selection and prediction. Finally, two real‐data applications are provided for illustrative purposes.
more » « less- PAR ID:
- 10492405
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Statistical Analysis and Data Mining: The ASA Data Science Journal
- Volume:
- 17
- Issue:
- 1
- ISSN:
- 1932-1864
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
We propose Dirichlet process mixture (DPM) models for prediction and cluster‐wise variable selection, based on two choices of shrinkage baseline prior distributions for the linear regression coefficients, namely, the Horseshoe prior and the Normal‐Gamma prior. We show in a simulation study that each of the two proposed DPM models tends to outperform the standard DPM model based on the non‐shrinkage normal prior, in terms of predictive, variable selection, and clustering accuracy. This is especially true for the Horseshoe model and when the number of covariates exceeds the within‐cluster sample size. A real data set is analysed to illustrate the proposed modelling methodology, where both proposed DPM models again attained better predictive accuracy.
-
Abstract In recent years, the choice of prior distributions for Bayesian logistic regression has received considerable interest. It is widely acknowledged that noninformative, improper priors have to be used with caution because posterior propriety may not always hold. As an alternative, heavy‐tailed priors such as Cauchy prior distributions have been proposed by Gelman et al. (2008). The motivation for using Cauchy prior distributions is that they are proper, and thus, unlike noninformative priors, they are guaranteed to yield proper posterior distributions. The heavy tails of the Cauchy distribution allow the posterior distribution to adapt to the data. Thus Gelman et al. (2008) suggested the use of these prior distributions as a default weakly informative choice, in the absence of prior knowledge about the regression coefficients. While these prior distributions are guaranteed to have proper posterior distributions, Ghosh, Li, and Mitra (2018), showed that the posterior means may not exist, or can be unreasonably large, when they exist, for datasets with separation. In this paper, we provide a short review of the concept of separation, and we discuss how common prior distributions like the Cauchy and normal prior perform in data with separation. Theoretical and empirical results suggest that lighter tailed prior distributions such as normal prior distributions can be a good default choice when there is separation.
This article is categorized under:
Statistical Learning and Exploratory Methods of the Data Sciences > Modeling Methods Statistical Models
-
Summary Since the advent of the horseshoe priors for regularisation, global–local shrinkage methods have proved to be a fertile ground for the development of Bayesian methodology in machine learning, specifically for high‐dimensional regression and classification problems. They have achieved remarkable success in computation and enjoy strong theoretical support. Most of the existing literature has focused on the linear Gaussian case; for which systematic surveys are available. The purpose of the current article is to demonstrate that the horseshoe regularisation is useful far more broadly, by reviewing both methodological and computational developments in complex models that are more relevant to machine learning applications. Specifically, we focus on methodological challenges in horseshoe regularisation in non‐linear and non‐Gaussian models, multivariate models and deep neural networks. We also outline the recent computational developments in horseshoe shrinkage for complex models along with a list of available software implementations that allows one to venture out beyond the comfort zone of the canonical linear regression problems.
-
Abstract This paper demonstrates the advantages of sharing information about unknown features of covariates across multiple model components in various nonparametric regression problems including multivariate, heteroscedastic, and semicontinuous responses. In this paper, we present a methodology which allows for information to be shared nonparametrically across various model components using Bayesian sum‐of‐tree models. Our simulation results demonstrate that sharing of information across related model components is often very beneficial, particularly in sparse high‐dimensional problems in which variable selection must be conducted. We illustrate our methodology by analyzing medical expenditure data from the Medical Expenditure Panel Survey (MEPS). To facilitate the Bayesian nonparametric regression analysis, we develop two novel models for analyzing the MEPS data using Bayesian additive regression trees—a heteroskedastic log‐normal hurdle model with a “shrink‐toward‐homoskedasticity” prior and a gamma hurdle model.