skip to main content


Title: Preparation of dissolved organic carbon (DOC) leachates from permafrost soils collected from the North Slope of Alaska in the summers of 2018 and 2022
Dissolved organic carbon (DOC) was leached from permafrost soils collected from the frozen permafrost layer at four sites underlying tussock tundra or wet sedge tundra vegetation and from both undisturbed soil and a thermokarst failure on the North Slope of Alaska during the summers of 2018 and 2022.  more » « less
Award ID(s):
2228992
PAR ID:
10492413
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Methane (CH4) concentrations were measured in dissolved organic carbon (DOC) leachates of permafrost soils collected from the frozen permafrost layer at five sites underlying tussock tundra or wet sedge vegetation on the North Slope of Alaska during the summers of 2018 and 2019. 
    more » « less
  2. Abstract

    High‐latitude climate change has impacted vegetation productivity, composition, and distribution across tundra ecosystems. Over the past few decades in northern Alaska, emergent macrophytes have increased in cover and density, coincident with increased air and water temperature, active layer depth, and nutrient availability. Unraveling the covarying climate and environmental controls influencing long‐term change trajectories is paramount for advancing our predictive understanding of the causes and consequences of warming in permafrost ecosystems. Within a climate‐controlled carbon flux monitoring system, we evaluate the impact of elevated nutrient availability associated with degraded permafrost (high‐treatment) and maximum field observations (low‐treatment), on aquatic macrophyte growth and methane (CH4) emissions. Nine aquaticArctophila fulva‐dominated tundra monoliths were extracted from tundra ponds near Utqiaġvik, Alaska, and placed in growth chambers that controlled ambient conditions (i.e., light, temperature, and water table), while measuring plant growth (periodically) and CH4fluxes (continuously) for 12 weeks. Results indicate that high nutrient treatments similar to that released from permafrost thaw can increase macrophyte biomass and total CH4emission by 54 and 64%, respectively. However, low treatments did not respond to fertilization. We estimate that permafrost thaw in tundra wetlands near Utqiaġvik have the potential to enhance regional CH4efflux by 30%. This study demonstrates the sensitivity of arctic tundra wetland biogeochemistry to nutrient release from permafrost thaw and suggests the decadal‐scale expansion ofA. fulva‐dominant aquatic plant communities, and increased CH4emissions in the region were likely in response to thawing permafrost, potentially representing a novel case study of the permafrost carbon feedback to warming.

     
    more » « less
  3. Abstract

    Climate warming has increased permafrost thaw in arctic tundra and extended the duration of annual thaw (number of thaw days in summer) along soil profiles. Predicting the microbial response to permafrost thaw depends largely on knowing how increased thaw duration affects the composition of the soil microbiome. Here, we determined soil microbiome composition from the annually thawed surface active layer down through permafrost from two tundra types at each of three sites on the North Slope of Alaska, USA. Variations in soil microbial taxa were found between sites up to ~90 km apart, between tundra types, and between soil depths. Microbiome differences at a site were greatest across transitions from thawed to permafrost depths. Results from correlation analysis based on multi‐decadal thaw surveys show that differences in thaw duration by depth were significantly, positively correlated with the abundance of dominant taxa in the active layer and negatively correlated with dominant taxa in the permafrost. Microbiome composition within the transition zone was statistically similar to that in the permafrost, indicating that recent decades of intermittent thaw have not yet induced a shift from permafrost to active‐layer microbes. We suggest that thaw duration rather than thaw frequency has a greater impact on the composition of microbial taxa within arctic soils.

     
    more » « less
  4. Abstract

    The thermal and hydraulic properties of the moss and organic layer regulate energy fluxes, permafrost stability, and hydrologic function in Arctic tundra. Our goal was to quantify evapotranspiration (ET) from dominant vegetation types in Arctic tundra. We designed and deployed a network of electronic automated weighing micro‐lysimeters (n = 58, area = 0.06 m2). We selectively clipped groups of plants from a subset of lysimeters to isolate ET from moss, tussocks, and mixed vascular plants. High rates of evaporation (E) recorded during the study period in the moss E lysimeters (64 mm) and high ET in the tussock ET lysimeters (60 mm) show that mosses and sedge tussocks (Eriophorum vaginatum) are the major constituents of local tundra ET. Moss E was consistently higher than ET from mixed vascular species with moss understory indicating that moss E dominates tundra water efflux at sites with moss understory. The ET partitioning presented here will allow for improved prediction of changes in water flux associated with observed and future vegetation change. Future changes in the composition and cover of mosses and vascular plants will not only alter partitioning of tundra ET but may also affect the significant role plants play in the moisture regime and thermodynamics of Arctic permafrost soils.

     
    more » « less
  5. ### Access Photos of ~50 permaforst boreholes and associated cores can be accessed and downloaded from the 'AR\_Fire\_Core_Photos' directory via: [https://arcticdata.io/data/10.18739/A2251FM9P/](https://arcticdata.io/data/10.18739/A2251FM9P/) ### Overview The Anaktuvuk River tundra fire burned more than 1,000 square kilometers of permafrost-affected arctic tundra in northern Alaska in 2007. The fire is the largest historical recorded tundra fire on the North Slope of Alaska. Fifty percent of the burn area is underlain by Yedoma permafrost that is characterized by extremely high ground-ice content of organic-rich, silty buried soils and the occurrence of large, syngenetic polygonal ice wedges. Given the high ground-ice content of this terrain, Yedoma is thought to be among the most vulnerable to fire-induced thermokarst in the Arctic. With this dataset, we update observations on near-surface permafrost in the Anaktuvuk River tundra fire burn area from 2009 to 2023 using repeat airborne LiDAR-derived elevation data, ground temperature measurements, and cryostratigraphic studies. We have provided all of the data that has gone into an analysis and resulting paper that has been submitted for peer review at the journal Scientific Reports. The datasets include: - 1 m spatial resolution airborne LiDAR-derived digital terrain models from the summers of 2009, 2014, and 2021. - The area in which thaw subsidence was detected in the multi-temporal LiDAR data using the Geomorphic Change Detection software. - A terrain unit map developed for the 50 square kilometer study area. - Ground temperature time series measurements for a logger located in the burned area and a logger located in an unburned area. The ground temperature data consist of daily mean measurements at a depth of 0.15 m (active layer) and 1.00 m (permafrost) from July 2009 to August 2023. - Photos ~50 permafrost boreholes and the associated cores collected there. - A borehole log and notes pdf also accompanies our studies on the cryostratigraphy of permafrost post-fire and our observations on the recovery of permafrost. 
    more » « less