skip to main content


Title: Radiocarbon and stable carbon isotopes of carbon dioxide produced by respiration of dissolved organic carbon (DOC) leached from permafrost soils collected from the North Slope of Alaska in the summers of 2018 and 2022
Dissolved organic carbon (DOC) was leached from permafrost soils near the Toolik Field Station in the Alaskan Arctic, either kept in the dark or exposed to light treatments, and then incubated with native permafrost microbial communities. The radiocarbon (14C) and stable carbon (13C) isotopic compositions of the initial DOC present in the dark or light-exposed permafrost soil leachates and the carbon dioxide (CO2) produced by microbial respiration of dark or light-exposed permafrost DOC were quantified.  more » « less
Award ID(s):
2228992
NSF-PAR ID:
10492414
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Leachates of dissolved organic carbon (DOC) from permafrost soils were prepared from soils collected from the North Slope of Alaska in 2018 and 2022. Soil leachates were then either kept in the dark or exposed to light from LEDs at 305 nm (UV) and 405 nm (visible), and then inoculated with native microbial communities and incubated. At the start of the biological incubations, single replicates of the DOC after dark or light treatment and inoculation were assigned accession numbers and analyzed for 14C and 13C at the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) facility. At the end of the biological incubations, duplicates of the dissolved inorganic carbon (DIC) in those waters were assigned accession numbers and analyzed for 14C and 13C at the NOSAMS facility. 
    more » « less
  2. Abstract

    The magnitude of future emissions of greenhouse gases from the northern permafrost region depends crucially on the mineralization of soil organic carbon (SOC) that has accumulated over millennia in these perennially frozen soils. Many recent studies have used radiocarbon (14C) to quantify the release of this “old” SOC as CO2or CH4to the atmosphere or as dissolved and particulate organic carbon (DOC and POC) to surface waters. We compiled ~1,90014C measurements from 51 sites in the northern permafrost region to assess the vulnerability of thawing SOC in tundra, forest, peatland, lake, and river ecosystems. We found that growing season soil14C‐CO2emissions generally had a modern (post‐1950s) signature, but that well‐drained, oxic soils had increased CO2emissions derived from older sources following recent thaw. The age of CO2and CH4emitted from lakes depended primarily on the age and quantity of SOC in sediments and on the mode of emission, and indicated substantial losses of previously frozen SOC from actively expanding thermokarst lakes. Increased fluvial export of aged DOC and POC occurred from sites where permafrost thaw caused soil thermal erosion. There was limited evidence supporting release of previously frozen SOC as CO2, CH4, and DOC from thawing peatlands with anoxic soils. This synthesis thus suggests widespread but not universal release of permafrost SOC following thaw. We show that different definitions of “old” sources among studies hamper the comparison of vulnerability of permafrost SOC across ecosystems and disturbances. We also highlight opportunities for future14C studies in the permafrost region.

     
    more » « less
  3. Climate warming is expected to mobilize northern permafrost and peat organic carbon (PP-C), yet magnitudes and system specifics of even current releases are poorly constrained. While part of the PP-C will degrade at point of thaw to CO 2 and CH 4 to directly amplify global warming, another part will enter the fluvial network, potentially providing a window to observe large-scale PP-C remobilization patterns. Here, we employ a decade-long, high-temporal resolution record of 14 C in dissolved and particulate organic carbon (DOC and POC, respectively) to deconvolute PP-C release in the large drainage basins of rivers across Siberia: Ob, Yenisey, Lena, and Kolyma. The 14 C-constrained estimate of export specifically from PP-C corresponds to only 17 ± 8% of total fluvial organic carbon and serves as a benchmark for monitoring changes to fluvial PP-C remobilization in a warming Arctic. Whereas DOC was dominated by recent organic carbon and poorly traced PP-C (12 ± 8%), POC carried a much stronger signature of PP-C (63 ± 10%) and represents the best window to detect spatial and temporal dynamics of PP-C release. Distinct seasonal patterns suggest that while DOC primarily stems from gradual leaching of surface soils, POC reflects abrupt collapse of deeper deposits. Higher dissolved PP-C export by Ob and Yenisey aligns with discontinuous permafrost that facilitates leaching, whereas higher particulate PP-C export by Lena and Kolyma likely echoes the thermokarst-induced collapse of Pleistocene deposits. Quantitative 14 C-based fingerprinting of fluvial organic carbon thus provides an opportunity to elucidate large-scale dynamics of PP-C remobilization in response to Arctic warming. 
    more » « less
  4. Abstract

    Tidal wetlands are a significant source of dissolved organic matter (DOM) to coastal ecosystems, which impacts nutrient cycling, light exposure, carbon dynamics, phytoplankton activity, microbial growth, and ecosystem productivity. There is a wide variety of research on the properties and sources of DOM; however, little is known about the characteristics and degradation of DOM specifically sourced from tidal wetland plants. By conducting microbial and combined UV exposure and microbial incubation experiments of leachates from fresh and senescent plants in Chesapeake Bay wetlands, it was demonstrated that senescent material leached more dissolved organic carbon (DOC) than fresh material (77.9 ± 54.3 vs 21.6 ± 11.8 mg DOC L−1, respectively). Degradation followed an exponential decay pattern, and the senescent material averaged 50.5 ± 9.45% biodegradable DOC (%BDOC), or the loss of DOC due to microbial degradation. In comparison, the fresh material averaged a greater %BDOC (72.6 ± 19.2%). Percent remaining of absorbance (83.3 ± 26.7% for fresh, 90.1 ± 10.8% for senescent) was greater than percent remaining DOC, indicating that colored DOM is less bioavailable than non-colored material. Concentrations of DOC leached, %BDOC, and SUVA280 varied between species, indicating that the species composition of the marsh likely impacts the quantity and quality of exported DOC. Comparing the UV + microbial to the microbial only incubations did not reveal any clear effects on %BDOC but UV exposure enhanced loss of absorbance during subsequent dark incubation. These results demonstrate the impacts of senescence on the quality and concentration of DOM leached from tidal wetland plants, and that microbes combined with UV impact the degradation of this DOM differently from microbes alone.

     
    more » « less
  5. Abstract

    Dissolved organic carbon (DOC) plays critical roles in marine carbon cycling, but its sources and sinks remain uncertain. In this study, we monitored DOC exudation rates ofSargassum natansunder visible light (λ > 390 nm) and solar radiation. DOC release rates ranged from 7 to 10 μg C g−1biomasshr−1(wet weight) under visible light, but increased to 23 to 41 μg C g−1biomasshr−1when exposed to natural sunlight. Results indicate that DOC released bySargassumcould amount to 0.3 to 1.2 Tg C/year, potentially contributing significantly to the marine DOC pool in the Gulf of Mexico and Western North Atlantic. We employed the Folin‐Ciocalteu phenolic content method, nuclear magnetic resonance (NMR) spectroscopy, and ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT‐ICR MS) to characterize the diverse pool of organic compounds exuded fromSargassum. Results from these complementary methods showed thatSargassumrelease large quantities of phlorotannins, a class of polyphenols that have very similar properties to terrestrial DOC. These phlorotannins and their oxygenated phenolic derivatives exhibit a high hydrogen deficiency and functionalization (i.e., 4 to 6 oxygen atoms per aromatic ring), representing 5 to 18% of the released DOC isolated by solid phase extraction. Thus,Sargassumis the largest biological source of open ocean polyphenols recorded to date. The amount of polyphenolic DOC released bySargassumchallenges previous beliefs that all polyphenols found within the oceans are remnants of terrestrial organic matter, although the stability of phlorotannins and their derivatives needs to be further evaluated.

     
    more » « less