skip to main content


Title: 3‐D Ionospheric Imaging Over the South American Region With a New TEC‐Based Ionospheric Data Assimilation System (TIDAS‐SA)
Abstract

This study has developed a new TEC‐based ionospheric data assimilation system for 3‐D regional ionospheric imaging over the South American sector (TIDAS‐SA) (45°S–15°N, 35°–85°W, and 100–800 km). The TIDAS‐SA data assimilation system utilizes a hybrid Ensemble‐Variational approach to incorporate a diverse set of ionospheric data sources, including dense ground‐based Global Navigation Satellite System (GNSS) line‐of‐sight Total Electron Content (TEC) data, radio occultation data from the Constellation Observing System for Meteorology, Ionosphere, and Climate‐2 (COSMIC‐2), and altimeter TEC data from the JASON‐3 satellite. TIDAS‐SA can produce a reanalyzed three‐dimensional (3‐D) electron density spatial variation with a high time cadence, yielding spatial‐temporal resolution of 1° (latitude) × 1° (longitude) × 20 km (altitude) × 5 min. This allows us to reconstruct and study the 3‐D ionospheric morphology with multi‐scale structures. The performance of the data assimilation system is validated against independent ionosonde and in situ measurements through an experiment for a strong geomagnetic storm event on 03–04 November 2021. The results demonstrate that TIDAS‐SA can provide detailed and altitude‐resolved information that accurately characterizes the storm‐time ionospheric disturbances in vertical and horizontal domains over the equatorial and low‐latitude regions of South America.

 
more » « less
NSF-PAR ID:
10492441
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Space Weather
Volume:
22
Issue:
2
ISSN:
1542-7390
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A new TEC‐based ionospheric data assimilation system (TIDAS) over the continental US and adjacent area (20°–60°N, 60°–130°W, and 100–600 km) has been developed through assimilating heterogeneous ionospheric data, including dense ground‐based Global Navigation Satellite System (GNSS) Total Electron Content (TEC) from 2,000+ receivers, Constellation Observing System for Meteorology, Ionosphere, and Climate radio occultation data, JASON satellite altimeter TEC, and Millstone Hill incoherent scatter radar measurements. A hybrid Ensemble‐Variational scheme is utilized to reconstruct the regional 3‐D electron density distribution: a more realistic and location‐dependent background error covariance matrix is calculated from an ensemble of corrected NeQuick outputs, and a three‐dimensional variational (3DVAR) method is adopted for measurement updates to obtain an optimal state estimation. The spatial‐temporal resolution of the reanalyzed 3‐D electron density product is as high as 1° × 1° in latitude and longitude, 20 km in altitude, and 5 min in universal time, which is sufficient to reproduce ionospheric fine structure and storm‐time disturbances. The accuracy and reliability of data assimilation results are validated using ionosonde and other measurements. TIDAS reanalyzed electron density is able to successfully reconstruct the 3‐D morphology and dynamic evolution of the storm‐enhanced density (SED) plume observed during the St. Patrick's day geomagnetic storm on 17 March 2013 with high fidelity. Using TIDAS, we found that the 3‐D SED plume manifests as a ridge‐like high‐density channel that predominantly occurred between 300 and 500 km during 19:00–21:00 UT for this event, with the F2 region peak height being raised by 40–60 km and peak density enhancement of 30%–50%.

     
    more » « less
  2. This paper studies the three-dimensional (3-D) ionospheric electron density variation over the continental US and adjacent regions during the August 2017 Great American Solar Eclipse event, using Millstone Hill incoherent scatter radar observations, ionosonde data, the Swarm satellite measurements, and a new TEC-based ionospheric data assimilation system (TIDAS). The TIDAS data assimilation system can reconstruct a 3-D electron density distribution over continental US and adjacent regions, with a spatial–temporal resolution of 1∘× 1∘ in latitude and longitude, 20 km in altitude, and 5 min in universal time. The combination of multi-instrumental observations and the high-resolution TIDAS data assimilation products can well represent the dynamic 3-D ionospheric electron density response to the solar eclipse, providing important altitude information and fine-scale details. Results show that the eclipse-induced ionospheric electron density depletion can exceed 50% around the F2-layer peak height between 200 and 300 km. The recovery of electron density following the maximum depletion exhibits an altitude-dependent feature, with lower altitudes exhibiting a faster recovery than the F2 peak region and above. The recovery feature was also characterized by a post-eclipse electron density enhancement of 15–30%, which is particularly prominent in the topside ionosphere at altitudes above 300 km.

     
    more » « less
  3. Abstract

    Postsunset midlatitude traveling ionospheric disturbances (TIDs) and equatorial plasma bubbles (EPBs) were simultaneously observed over American sector during the geomagnetic storm on 8 September 2017. The characteristics of TIDs are analyzed by using a combination of the Millstone Hill incoherent scatter radar data and 2‐D detrended total electron content (TEC) from ground‐based Global Navigation Satellite System receivers. The main results associated with EPBs are as follows: (1) stream‐like structures of TEC depletion occurred simultaneously at geomagnetically conjugate points, (2) poleward extension of the TEC irregularities/depletions along the magnetic field lines, (3) severe equatorial and midlatitude electron density (Ne) bite outs observed by Defense Meteorological Satellite Program and Swarm satellites, and (4) enhancements of ionosphereFlayer virtual height and vertical drifts observed by equatorial ionosondes near the EPBs initiation region. The stream‐like TEC depletions reached 46° magnetic latitudes that map to an apex altitude of 6,800 km over the magnetic equator using International Geomagnetic Reference Field. The formation of this extended density depletion structure is suggested to be due to the merging between the altitudinal/latitudinal extension of EPBs driven by strong prompt penetration electric field and midlatitude TIDs. Moreover, the poleward portion of the depletion/irregularity drifted westward and reached the equatorward boundary of the ionospheric main trough. This westward drift occurred at the same time as the sudden expansion of the convection pattern and could be attributed to the strong returning westward flow near the subauroral polarization stream region. Other possible mechanisms for the westward tilt are also discussed.

     
    more » « less
  4. Abstract

    This paper studies the ionosphere's response to the annular solar eclipse on 26 December 2019, utilizing the following ground‐based and space‐borne measurements: Global Navigation Satellite System (GNSS) total electron content (TEC) data, spectral radiance data from the Sentinel‐5P satellite, in situ electron density and/or temperature measurements from DMSP and Swarm satellites, and local magnetometer data. Analysis concentrated on ionospheric effects over low‐latitude regions with respect to obscuration, local time, latitude, and altitude. The main results are as follows: (1) a local TEC reduction of4–6 TECU (30–50%) was identified along the annular eclipse path, with larger depletion and longer recovery periods in the morning eclipse compared to midday. (2) The equatorial electrojet current was significantly weakened when the eclipse trajectory crossed the magnetic equator in the morning (India) sector, which contributed to large and prolonged TEC depletion therein. (3) At midday, equatorial ionization anomaly exhibited enhancements of 20–40% as well as poleward shifting of 3–4°, likely triggered by modified neutral wind and electrodynamics patterns. (4) The behavior of equatorial ionospheric electron density showed considerable altitudinal differences in the topside, exhibiting30% reduction around 500 km and30% enhancement with 300–500 KTereduction around 850 km, before the arrival of maximum eclipse. This may have been caused by the enhanced eastward electric field and equatorward neutral wind, and other possible factors are also discussed.

     
    more » « less
  5. Abstract

    Physics‐based Data Assimilation (DA) has been shown to be a powerful technique for specifying and predicting space weather. However, it is also known that different data assimilation models simulating the same geophysical event can display different space weather features even if the same data are assimilated. In this study, we used our Multimodel Ensemble Prediction System (MEPS) of DA models to elucidate the similarities and differences in the individual DA model reconstructions of the mid‐low latitude ionosphere when the same data are assimilated. Ensemble model averages were also obtained. For this ensemble modeling study, we selected the quiet/storm period of 16 and 17 March 2013 (equinox, solar medium). Five data assimilation models and one physics‐based model were used to produce an ensemble mean output for Total Electron Content (TEC), ionospheric peak density (NmF2), and ionospheric peak height (hmF2) for latitudes less than 60° and all longitudes. The data assimilated included ground‐based Global Positioning Satellite TEC and topside plasma densities near 800 km altitude derived from the COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) satellites. Both a simple average and a weighted average of the models were used in the ensemble averaging in order to determine if there was an improvement of the ensemble averages over the individual models.

     
    more » « less