skip to main content


Title: Causally‐Informed Deep Learning to Improve Climate Models and Projections
Abstract

Climate models are essential to understand and project climate change, yet long‐standing biases and uncertainties in their projections remain. This is largely associated with the representation of subgrid‐scale processes, particularly clouds and convection. Deep learning can learn these subgrid‐scale processes from computationally expensive storm‐resolving models while retaining many features at a fraction of computational cost. Yet, climate simulations with embedded neural network parameterizations are still challenging and highly depend on the deep learning solution. This is likely associated with spurious non‐physical correlations learned by the neural networks due to the complexity of the physical dynamical system. Here, we show that the combination of causality with deep learning helps removing spurious correlations and optimizing the neural network algorithm. To resolve this, we apply a causal discovery method to unveil causal drivers in the set of input predictors of atmospheric subgrid‐scale processes of a superparameterized climate model in which deep convection is explicitly resolved. The resulting causally‐informed neural networks are coupled to the climate model, hence, replacing the superparameterization and radiation scheme. We show that the climate simulations with causally‐informed neural network parameterizations retain many convection‐related properties and accurately generate the climate of the original high‐resolution climate model, while retaining similar generalization capabilities to unseen climates compared to the non‐causal approach. The combination of causal discovery and deep learning is a new and promising approach that leads to stable and more trustworthy climate simulations and paves the way toward more physically‐based causal deep learning approaches also in other scientific disciplines.

 
more » « less
NSF-PAR ID:
10492552
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
129
Issue:
4
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Stochastic parameterizations account for uncertainty in the representation of unresolved subgrid processes by sampling from the distribution of possible subgrid forcings. Some existing stochastic parameterizations utilize data‐driven approaches to characterize uncertainty, but these approaches require significant structural assumptions that can limit their scalability. Machine learning models, including neural networks, are able to represent a wide range of distributions and build optimized mappings between a large number of inputs and subgrid forcings. Recent research on machine learning parameterizations has focused only on deterministic parameterizations. In this study, we develop a stochastic parameterization using the generative adversarial network (GAN) machine learning framework. The GAN stochastic parameterization is trained and evaluated on output from the Lorenz '96 model, which is a common baseline model for evaluating both parameterization and data assimilation techniques. We evaluate different ways of characterizing the input noise for the model and perform model runs with the GAN parameterization at weather and climate time scales. Some of the GAN configurations perform better than a baseline bespoke parameterization at both time scales, and the networks closely reproduce the spatiotemporal correlations and regimes of the Lorenz '96 system. We also find that, in general, those models which produce skillful forecasts are also associated with the best climate simulations.

     
    more » « less
  2. Accurate prediction of precipitation intensity is crucial for both human and natural systems, especially in a warming climate more prone to extreme precipitation. Yet, climate models fail to accurately predict precipitation intensity, particularly extremes. One missing piece of information in traditional climate model parameterizations is subgrid-scale cloud structure and organization, which affects precipitation intensity and stochasticity at coarse resolution. Here, using global storm-resolving simulations and machine learning, we show that, by implicitly learning subgrid organization, we can accurately predict precipitation variability and stochasticity with a low-dimensional set of latent variables. Using a neural network to parameterize coarse-grained precipitation, we find that the overall behavior of precipitation is reasonably predictable using large-scale quantities only; however, the neural network cannot predict the variability of precipitation ( R 2 ∼ 0.45) and underestimates precipitation extremes. The performance is significantly improved when the network is informed by our organization metric, correctly predicting precipitation extremes and spatial variability ( R 2 ∼ 0.9). The organization metric is implicitly learned by training the algorithm on a high-resolution precipitable water field, encoding the degree of subgrid organization. The organization metric shows large hysteresis, emphasizing the role of memory created by subgrid-scale structures. We demonstrate that this organization metric can be predicted as a simple memory process from information available at the previous time steps. These findings stress the role of organization and memory in accurate prediction of precipitation intensity and extremes and the necessity of parameterizing subgrid-scale convective organization in climate models to better project future changes of water cycle and extremes. 
    more » « less
  3. Abstract

    Subgrid processes in global climate models are represented by parameterizations which are a major source of uncertainties in simulations of climate. In recent years, it has been suggested that machine‐learning (ML) parameterizations based on high‐resolution model output data could be superior to traditional parameterizations. Currently, both traditional and ML parameterizations of subgrid processes in the atmosphere are based on a single‐column approach, which only use information from single atmospheric columns. However, single‐column parameterizations might not be ideal since certain atmospheric phenomena, such as organized convective systems, can cross multiple grid boxes and involve slantwise circulations that are not purely vertical. Here we train neural networks (NNs) using non‐local inputs spanning over 3 × 3 columns of inputs. We find that including the non‐local inputs improves the offline prediction of a range of subgrid processes. The improvement is especially notable for subgrid momentum transport and for atmospheric conditions associated with mid‐latitude fronts and convective instability. Using an interpretability method, we find that the NN improvements partly rely on using the horizontal wind divergence, and we further show that including the divergence or vertical velocity as a separate input substantially improves offline performance. However, non‐local winds continue to be useful inputs for parameterizating subgrid momentum transport even when the vertical velocity is included as an input. Overall, our results imply that the use of non‐local variables and the vertical velocity as inputs could improve the performance of ML parameterizations, and the use of these inputs should be tested in online simulations in future work.

     
    more » « less
  4. Abstract

    Attempts to use machine learning to develop atmospheric parameterizations have mainly focused on subgrid effects on temperature and moisture, but subgrid momentum transport is also important in simulations of the atmospheric circulation. Here, we use neural networks to develop a subgrid momentum transport parameterization that learns from coarse‐grained output of a high‐resolution atmospheric simulation in an idealized aquaplanet domain. We show that substantial subgrid momentum transport occurs due to convection. The neural‐network parameterization has skill in predicting momentum fluxes associated with convection, although its skill for subgrid momentum fluxes is lower compared to subgrid energy and moisture fluxes. The parameterization conserves momentum, and when implemented in the same atmospheric model at coarse resolution it leads to stable simulations and tends to reduce wind biases, although it over‐corrects for one configuration tested. Overall, our results show that it is challenging to predict subgrid momentum fluxes and that machine‐learning momentum parameterization gives promising results.

     
    more » « less
  5. Abstract

    Coupled climate simulations that span several hundred years cannot be run at a high‐enough spatial resolution to resolve mesoscale ocean dynamics. Recently, several studies have considered Deep Learning to parameterize subgrid forcing within macroscale ocean equations using data from ocean‐only simulations with idealized geometry. We present a stochastic Deep Learning parameterization that is trained on data generated by CM2.6, a high‐resolution state‐of‐the‐art coupled climate model. We train a Convolutional Neural Network for the subgrid momentum forcing using macroscale surface velocities from a few selected subdomains with different dynamical regimes. At each location of the coarse grid, rather than predicting a single number for the subgrid momentum forcing, we predict both the mean and standard deviation of a Gaussian probability distribution. This approach requires training our neural network to minimize a negative log‐likelihood loss function rather than the Mean Square Error, which has been the standard in applications of Deep Learning to the problem of parameterizations. Each estimate of the conditional mean subgrid forcing is thus associated with an uncertainty estimate–the standard deviation—which will form the basis for a stochastic subgrid parameterization. Offline tests show that our parameterization generalizes well to the global oceans and a climate with increasedlevels without further training. We then implement our learned stochastic parameterization in an eddy‐permitting idealized shallow water model. The implementation is stable and improves some statistics of the flow. Our work demonstrates the potential of combining Deep Learning tools with a probabilistic approach in parameterizing unresolved ocean dynamics.

     
    more » « less