skip to main content


Title: Modelling the Deformation of Polydomain Liquid Crystal Elastomers as a State of Hyperelasticity
Abstract

A hyperelasticity modelling approach is employed for capturing various and complex mechanical behaviours exhibited by macroscopically isotropic polydomain liquid crystal elastomers (LCEs). These include the highly non-linear behaviour of nematic-genesis polydomain LCEs, and the soft elasticity plateau in isotropic-genesis polydomain LCEs, under finite multimodal deformations (uniaxial and pure shear) using in-house synthesised acrylate-based LCE samples. Examples of application to capturing continuous softening (i.e., in the primary loading path), discontinuous softening (i.e., in the unloading path) and auxetic behaviours are also demonstrated on using extant datasets. It is shown that our comparatively simple model, which breaks away from the neo-classical theory of liquid crystal elastomers, captures the foregoing behaviours favourably, simply as states of hyperelasticity. Improved modelling results obtained by our approach compared with the existing models are also discussed. Given the success of the considered model in application to these datasets and deformations, the simplicity of its functional form (and thereby its implementation), and comparatively low(er) number of parameters, the presented isotropic hyperelastic strain energy function here is suggested for: (i) modelling the general mechanical behaviour of LCEs, (ii) the backbone in the neo-classical theory, and/or (iii) the basic hyperelastic model in other frameworks where the incorporation of the director, anisotropy, viscoelasticity, temperature, softening etc parameters may be required.

 
more » « less
NSF-PAR ID:
10492554
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of Elasticity
ISSN:
0374-3535
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Liquid crystal elastomers (LCEs) are made of liquid crystal molecules integrated with rubber-like polymer networks. An LCE exhibits both the thermotropic property of liquid crystals and the large deformation of elastomers. It can be monodomain or polydomain in the nematic phase and transforms to an isotropic phase at elevated temperature. These features have enabled various new applications of LCEs in robotics and other fields. However, despite substantial research and development in recent years, thermomechanical coupling in polydomain LCEs remains poorly studied, such as their temperature-dependent mechanical response and stretch-influenced isotropic-nematic phase transition. This knowledge gap severely limits the fundamental understanding of the structure-property relationship, as well as future developments of LCEs with precisely controlled material behaviors. Here, we construct a theoretical model to investigate the thermomechanical coupling in polydomain LCEs. The model includes a quasi-convex elastic energy of the polymer network and a free energy of mesogens. We study the working conditions where a polydomain LCE is subjected to various prescribed planar stretches and temperatures. The quasi-convex elastic energy enables a “mechanical phase diagram” that describes the macroscopic effective mechanical response of the material, and the free energy of mesogens governs their first-order nematic-isotropic phase transition. The evolution of the mechanical phase diagram and the order parameter with temperature is predicted and discussed. Unique temperature-dependent mechanical behaviors of the polydomain LCE that have never been reported before are shown in their stress-stretch curves. These results are hoped to motivate future fundamental studies and new applications of thermomechanical LCEs. 
    more » « less
  2. A comparative study is presented to solve the inverse problem in elasticity for the shear modulus (stiffness) distribution utilizing two constitutive equations: (1) linear elasticity assuming small strain theory, and (2) finite elasticity with a hyperelastic neo-Hookean material model. Assuming that a material undergoes large deformations and material nonlinearity is assumed negligible, the inverse solution using (2) is anticipated to yield better results than (1). Given the fact that solving a linear elastic model is significantly faster than a nonlinear model and more robust numerically, we posed the following question: How accurately could we map the shear modulus distribution with a linear elastic model using small strain theory for a specimen undergoing large deformations? To this end, experimental displacement data of a silicone composite sample containing two stiff inclusions of different sizes under uniaxial displacement controlled extension were acquired using a digital image correlation system. The silicone based composite was modeled both as a linear elastic solid under infinitesimal strains and as a neo-Hookean hyperelastic solid that takes into account geometrically nonlinear finite deformations. We observed that the mapped shear modulus contrast, determined by solving an inverse problem, between inclusion and background was higher for the linear elastic model as compared to that of the hyperelastic one. A similar trend was observed for simulated experiments, where synthetically computed displacement data were produced and the inverse problem solved using both, the linear elastic model and the neo-Hookean material model. In addition, it was observed that the inverse problem solution was inclusion size-sensitive. Consequently, an 1-D model was introduced to broaden our understanding of this issue. This 1-D analysis revealed that by using a linear elastic approach, the overestimation of the shear modulus contrast between inclusion and background increases with the increase of external loads and target shear modulus contrast. Finally, this investigation provides valuable information on the validity of the assumption for utilizing linear elasticity in solving inverse problems for the spatial distribution of shear modulus associated with soft solids undergoing large deformations. Thus, this work could be of importance to characterize mechanical property variations of polymer based materials such as rubbers or in elasticity imaging of tissues for pathology. 
    more » « less
  3. Continuous and controlled shape morphing is essential for soft machines to conform, grasp, and move while interacting safely with their surroundings. Shape morphing can be achieved with two-dimensional (2D) sheets that reconfigure into target 3D geometries, for example, using stimuli-responsive materials. However, most existing solutions lack the ability to reprogram their shape, face limitations on attainable geometries, or have insufficient mechanical stiffness to manipulate objects. Here, we develop a soft, robotic surface that allows for large, reprogrammable, and pliable shape morphing into smooth 3D geometries. The robotic surface consists of a layered design composed of two active networks serving as artificial muscles, one passive network serving as a skeleton, and cover scales serving as an artificial skin. The active network consists of a grid of strips made of heat-responsive liquid crystal elastomers (LCEs) containing stretchable heating coils. The magnitude and speed of contraction of the LCEs can be controlled by varying the input electric currents. The 1D contraction of the LCE strips activates in-plane and out-of-plane deformations; these deformations are both necessary to transform a flat surface into arbitrary 3D geometries. We characterize the fundamental deformation response of the layers and derive a control scheme for actuation. We demonstrate that the robotic surface provides sufficient mechanical stiffness and stability to manipulate other objects. This approach has potential to address the needs of a range of applications beyond shape changes, such as human-robot interactions and reconfigurable electronics.

     
    more » « less
  4. Abstract

    The most widely-used representation of the compressible, isotropic, neo-Hookean hyperelastic model is considered in this paper. The version under investigation is that which is implemented in the commercial finite element software ABAQUS, ANSYS and COMSOL. Transverse stretch solutions are obtained for the following homogeneous deformations: uniaxial loading, equibiaxial loading in plane stress, and uniaxial loading in plane strain. The ground-state Poisson’s ratio is used to parameterize the constitutive model, and stress solutions are computed numerically for the physically permitted range of its values. Despite its broad application to a number of engineering problems, the physical limitations of the model, particularly in the small to moderate stretch regimes, are not explored. In this work, we describe and analyze results and make some critical observations, underlining the model’s advantages and limitations. For example, a snap-back feature of the transverse stretch is identified in uniaxial compression, a physically undesirable behavior unless validated by experimental data. The domain of this non-unique solution is determined in terms of the ground-state Poisson’s ratio and the state of stretch and stress. The analyses we perform are essential to enable the understanding of the characteristics of the standard, compressible, isotropic, neo-Hookean model used in ABAQUS, ANSYS and COMSOL. In addition, our results provide a framework for the parameter-fitting procedure needed to characterize this standard, compressible, isotropic neo-Hookean model in terms of experimental data.

     
    more » « less
  5. Abstract

    Liquid crystal elastomers (LCEs) with intrinsic anisotropic strains are reversible shape‐memory polymers of interest in sensor, actuator, and soft robotics applications. Rapid gelation of LCEs is required to fix molecular ordering within the elastomer network, which is essential for directed shape transformation. A highly efficient photo‐cross‐linking chemistry, based on two‐step oxygen‐mediated thiol–acrylate click reactions, allows for nearly instant gelation of the main‐chain LCE network upon exposure to UV light. Molecular orientation from the pre‐aligned liquid crystal oligomers can be faithfully transferred to the LCE films, allowing for preprogrammed shape morphing from two to three dimensions by origami‐ (folding‐only) and kirigami‐like (folding with cutting) mechanisms. The new LCE chemistry also enables widely tunable physical properties, including nematic‐to‐ isotropic phase‐transition temperatures (TN‐I), glassy transition temperatures (Tg), and mechanical strains, without disrupting the LC ordering.

     
    more » « less