skip to main content


This content will become publicly available on September 1, 2024

Title: Wind-Tunnel Experiments of Turbulent Wind Fields over a Two-dimensional (2D) Steep Hill: Effects of the Stable Boundary Layer
Flow separation caused by steep topography remains a significant obstacle in accurately predicting turbulent boundary-layer flows over complex terrain, despite the utilization of sophisticated numerical models. The addition of atmospheric thermal stability, in conjunction with steep topography, further complicates the determination of disrupted turbulent wind patterns. The turbulent separated flows over a two-dimensional (2D) steep hill under thermal stratification has not been extensively addressed in previous experimental studies. Such measurements are crucial for enhancing our comprehension of flow physics and validating numerical models. We measured the turbulent wind flows over a 2D steep hill immersed in a stable boundary layer (of the bulk Richardson Number = 0.256) in a thermally-stratified boundary-layer wind tunnel. The flow separation, re-circulation zone and flow reattachment were characterized by the planar particle image velocimetry technique. Vertical profiles of mean air temperature and its fluctuations are also quantified at representative locations above the 2D steep hill and in the near wake region. Results indicate that the separated shear layer, initiated near the crest of the 2D steep hill, dominates the physical process leading to high turbulence levels and the turbulent kinetic energy production in the wake region for both stable and neutral thermal stability. Although the stable boundary layer does not dramatically change the turbulent flow pattern around the hill, the mean separation bubble is elongated by 13%, and its vertical extent is decreased by approximately 20%. Furthermore, the reduced turbulence intensities and turbulent kinetic energy of the near wake flow are attributed to the relatively low turbulence intensity and low momentum of the stable boundary layer due to buoyancy damping, compared to the neutral boundary layer. Additionally, a distinct low-temperature region—a cold pool—is extended beyond the separation bubble, reflecting the significant sheltering effect of the 2D steep hill on the downwind flow and temperature field.  more » « less
Award ID(s):
1944776
NSF-PAR ID:
10492597
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Boundary-Layer Meteorology
Volume:
188
Issue:
3
ISSN:
0006-8314
Page Range / eLocation ID:
441 to 461
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The significance of air flow within dense canopies situated on hilly terrain is not in dispute given its relevance to a plethora of applications in meteorology, wind energy, air pollution, atmospheric chemistry and ecology. While the mathematical description of such flows is complex, progress has proceeded through an interplay between experiments, mathematical modelling, and more recently large‐eddy simulations (LESs). In this contribution, LES is used to investigate the topography‐induced changes in the flow field and how these changes propagate to scalar transport within the canopy. The LES runs are conducted for a neutral atmospheric boundary layer above a tall dense forested canopy situated on a train of two‐dimensional sinusoidal hills. The foliage distribution is specified using leaf area density measurements collected in an Amazon rain forest. A series of LES runs with increasing hill amplitude are conducted to disturb the flow from its flat‐terrain state. The LES runs successfully reproduce the recirculation region and the flow separation on the lee‐side of the hill within the canopy region in agreement with prior laboratory and LES studies. Simulation results show that air parcels released inside the canopy have two preferential pathways to escape the canopy region: a “local” pathway similar to that encountered in flat terrain and an “advective” pathway near the flow‐separation region. Further analysis shows that the preferential escape location over the flow‐separation region leads to a “chimney”‐like effect that becomes amplified for air parcel releases near the forest floor. The work here demonstrates that shear‐layer turbulence is the main mechanism exporting air parcels out the canopy for both pathways. However, compared to flat terrain, the mean updraught at the flow separation induced by topography significantly shortens the in‐canopy residence time for air parcels released in the lower canopy, thus enhancing the export fraction of reactive gases.

     
    more » « less
  2. An incoming canonical spatially developing turbulent boundary layer (SDTBL) over a 2-D curved hill is numerically investigated via the Reynolds-averaged Navier–Stokes (RANS) equations plus two eddy-viscosity models: the K−ω SST (henceforth SST) and the Spalart–Allmaras (henceforth SA) turbulence models. A spatially evolving thermal boundary layer has also been included, assuming temperature as a passive scalar (Pr = 0.71) and a turbulent Prandtl number, Prt, of 0.90 for wall-normal turbulent heat flux modeling. The complex flow with a combined strong adverse/favorable streamline curvature-driven pressure gradient caused by concave/convex surface curvatures has been replicated from wind-tunnel experiments from the literature, and the measured velocity and pressure fields have been used for validation purposes (the thermal field was not experimentally measured). Furthermore, direct numerical simulation (DNS) databases from the literature were also employed for the incoming turbulent flow assessment. Concerning first-order statistics, the SA model demonstrated a better agreement with experiments where the turbulent boundary layer remained attached, for instance, in Cp, Cf, and Us predictions. Conversely, the SST model has shown a slightly better match with experiments over the flow separation zone (in terms of Cp and Cf) and in Us profiles just upstream of the bubble. The Reynolds analogy, based on the St/(Cf/2) ratio, holds in zero-pressure gradient (ZPG) zones; however, it is significantly deteriorated by the presence of streamline curvature-driven pressure gradient, particularly due to concave wall curvature or adverse-pressure gradient (APG). In terms of second-order statistics, the SST model has better captured the positively correlated characteristics of u′ and v′ or positive Reynolds shear stresses ( > 0) inside the recirculating zone. Very strong APG induced outer secondary peaks in and turbulence production as well as an evident negative slope on the constant shear layer. 
    more » « less
  3. There has been an increase in recognition of the important role that the boundary layer turbulent flow structure has on wake recovery and concomitant wind farm efficiency. Most research thus far has focused on onshore wind farms, in which the ground surface is static. With the expected growth of offshore wind farms, there is increased interest in turbulent flow structures above wavy, moving surfaces and their effects on offshore wind farms. In this study, experiments are performed to analyze the turbulent structure above the waves in the wake of a fixed-bottom model wind farm, with special emphasis on the conditional averaged Reynolds stresses, using a quadrant analysis. Phase-averaged profiles show a correlation between the Reynolds shear stresses and the curvature of the waves. Using a quadrant analysis, Reynolds stress dependence on the wave phase is observed in the phase-dependent vertical position of the turbulence events. This trend is primarily seen in quadrants 1 and 3 (correlated outward and inward interactions). Quantification of the correlation between the Reynolds shear stress events and the surface waves provides insight into the turbulent flow mechanisms that influence wake recovery throughout the wake region and should be taken into consideration in wind turbine operation and placement.

     
    more » « less
  4. Low-fidelity engineering wake models are often combined with linear superposition laws to predict wake velocities across wind farms under steady atmospheric conditions. While convenient for wind farm planning and long-term performance evaluation, such models are unable to capture the time-varying nature of the waked velocity field, as they are agnostic to the complex aerodynamic interactions among wind turbines and the effects of atmospheric boundary layer turbulence. To account for such effects while remaining amenable to conventional system-theoretic tools for flow estimation and control, we propose a new class of data-enhanced physics-based models for the dynamics of wind farm flow fluctuations. Our approach relies on the predictive capability of the stochastically forced linearized Navier–Stokes equations around static base flow profiles provided by conventional engineering wake models. We identify the stochastic forcing into the linearized dynamics via convex optimization to ensure statistical consistency with higher-fidelity models or experimental measurements while preserving model parsimony. We demonstrate the utility of our approach in completing the statistical signature of wake turbulence in accordance with large-eddy simulations of turbulent flow over a cascade of yawed wind turbines. Our numerical experiments provide insight into the significance of spatially distributed field measurements in recovering the statistical signature of wind farm turbulence and training stochastic linear models for short-term wind forecasting.

     
    more » « less
  5. Abstract

    Single wind turbines and large wind farms modify local scales of atmospheric boundary layer (ABL) turbulence through different mechanisms dependent on location within the wind farm. These changes in turbulence scales would most likely have notable influence on surface fluxes and microclimate during the afternoon and early evening stability transition. Profiles of Richardson number and shear and buoyancy from 1‐Hz tall tower measurements in and near a wind farm in an agricultural landscape were used to quantify departures in stability characteristics during the fallow seasons. A single turbine wake decoupled turbulent connection between the surface and above the wind turbine, changed the onset of near‐surface stabilization (earlier by a few hours), and lengthened the transition period (by up to an hour) within the rotor wake. Deep within a large wind farm, turbulence recovered to near‐ambient conditions and departures of the transition onset and duration were within 30 min of the natural ABL.

     
    more » « less