skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High‐Throughput Evaluation of Hardening Coefficients of Eight Alloying Elements in Magnesium
Liquid–solid diffusion couples (LSDCs) are employed to generate a composition gradient in the single‐phase hexagonal closed‐packed (hcp) solid solution with compositions up to the solubility limit of various solutes in Mg. Nanoindentation scanning across the composition gradient in LSDCs allows effective evaluation of composition‐dependent hardness of eight alloying elements (Al, Ca, Ce, Gd, Li, Sn, Y, and Zn) in the hcp Mg phase. The hardening coefficients, an indicator of the potency of solid‐solution hardening, are evaluated from the measured composition‐hardness data and correlated with various materials properties such as atomic radius, shear modulus, and elastic modulus of the solutes. The rank of hardening potency of Al, Gd, Sn, Y, and Zn measured by nanoindentation is in good agreement with that measured by microindentation reported in the literature. The hardening coefficient (potency) from the strongest to the weakest is Ce > Ca > Y ≈ Gd > Zn > Al ≈ Sn > Li in Mg‐based hcp binary solid solutions. The hardening coefficient is found to be closely correlated with the strengthening potency.  more » « less
Award ID(s):
2004979
PAR ID:
10492753
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Engineering Materials
Volume:
26
Issue:
4
ISSN:
1438-1656
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The solubility values of eight common alloying elements Al, Ca, Ce, Gd, Nd, Sn, Y and Zn in hcp Mg are experimentally measured from diffusion profiles obtained from diffusion multiples and liquid-solid diffusion couples (LSDCs) using electron probe microanalysis. These solubility values are used to establish solidus and solvus lines and compared with the experimental results reported in the literature as well as the computed phase boundaries using two CALPHAD (CALculation of PHAse Diagrams) databases. Our experimental values for Mg-Ca (530, 580, 600, 630 °C), Mg-Ce (605, 630 °C), Mg-Gd (570, 600, 630 °C) and Mg-Nd (615, 630 °C) are the first ever measurements of the hcp solidus for these four binary systems. Additional solubility data obtained from our experiments are reported for Mg-Al (375, 420, 450, 500, 550, 600 °C), Mg-Sn (375, 420, 500, 550, 600 °C), Mg-Y (590, 610, 630 °C), and Mg-Zn (275, 450, 500, 550 °C). Our experimental data are valuable input to future thermodynamic reassessments of the eight binary systems. This study also clearly shows the effectiveness of measuring solidus data using the elegant LSDCs. 
    more » « less
  2. Maier, P.; Barela, S.; Miller, V.M.; Neelameggham, N.R. (Ed.)
    Mg-Sn and Mg-Zn alloys exhibit a strong age-hardening effect and have become promising bases for high-strength and low-cost Mg alloys. However, the atomic structures and phase stabilities of various precipitates and intermetallic compounds during the heat treatment in these systems remain unclear. Here we use a combined approach of first-principles calculations and cluster expansion (CE) to investigate the atomic structures and thermodynamic stabilities of the experimentally reported precipitates as well as orderings on the FCC and HCP lattices in Mg-Sn and Mg-Zn alloys. From the low energy structures searched by CE, potential Guinier–Preston (GP) zones are identified from preferred HCP orderings. The slow convergence for CE of HCP Mg-Zn, compared with that of Mg-Sn system, is attributed to the long-ranged interactions resulting from the larger lattice mismatch. This study could help design better age-hardened Mg alloys. 
    more » « less
  3. Abstract Mineral/melt partition coefficients have been widely used to provide insights into magmatic processes. Olivine is one of the most abundant and important minerals in the lunar mantle and mare basalts. Yet, no systematic olivine/melt partitioning data are available for lunar conditions. We report trace element partition data between host mineral olivine and its melt inclusions in lunar basalts. Equilibrium is evaluated using the Fe-Mg exchange coefficient, leading to the choice of melt inclusion-host olivine pairs in lunar basalts 12040, 12009, 15016, 15647, and 74235. Partition coefficients of 21 elements (Li, Mg, Al, Ca, Ti, V, Cr, Mn, Fe, Co, Y, Zr, Nb, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) were measured. Except for Li, V, and Cr, these elements show no significant difference in olivine-melt partitioning compared to the data for terrestrial samples. The partition coefficient of Li between olivine and melt in some lunar basalts with low Mg# (Mg# < 0.75 in olivine, or < ~0.5 in melt) is higher than published data for terrestrial samples, which is attributed to the dependence of DLi on Mg# and the lack of literature DLi data with low Mg#. The partition coefficient of V in lunar basalts is measured to be 0.17 to 0.74, significantly higher than that in terrestrial basalts (0.003 to 0.21), which can be explained by the lower oxygen fugacity in lunar basalts. The significantly higher DV can explain why V is less enriched in evolved lunar basalts than terrestrial basalts. The partition coefficient of Cr between olivine and basalt melt in the Moon is 0.11 to 0.62, which is lower than those in terrestrial settings by a factor of ~2. This is surprising because previous authors showed that Cr partition coefficient is independent of fO2. A quasi-thermodynamically based model is developed to correlate Cr partition coefficient to olivine and melt composition and fO2. The lower Cr partition coefficient between olivine and basalt in the Moon can lead to more Cr enrichment in the lunar magma ocean, as well as more Cr enrichment in mantle-derived basalts in the Moon. Hence, even though Cr is typically a compatible element in terrestrial basalts, it is moderately incompatible in primitive lunar basalts, with a similar degree of incompatibility as V based on partition coefficients in this work, as also evidenced by the relatively constant V/Cr ratio of 0.039 ± 0.011 in lunar basalts. The confirmation of constant V/Cr ratio is important for constraining concentrations of Cr (slightly volatile and siderophile) and V (slightly siderophile) in the bulk silicate Moon. 
    more » « less
  4. Microwave plasma chemical vapor deposition (MPCVD) was used to diffuse boron into tantalum using plasma initiated from a feedgas mixture containing hydrogen and diborane. The role of substrate temperature and substrate bias in influencing surface chemical structure and hardness was investigated. X-ray diffraction shows that increased temperature results in increased TaB 2 formation (relative to TaB) along with increased strain in the tantalum body-centered cubic lattice. Once the strained tantalum becomes locally supersaturated with boron, TaB and TaB 2 precipitate. Additional boron remains in a solid solution within the tantalum. The combination of precipitation and solid solution hardening along with boron-induced lattice strain may help explain the 40 GPa average hardness measured by nanoindentation. Application of negative substrate bias did not further increase the hardness, possibly due to etching from increased ion bombardment. These results show that MPCVD is a viable method for synthesis of superhard borides based on plasma-assisted diffusion. 
    more » « less
  5. null (Ed.)
    Due to the low cost and abundance of multivalent metallic resources (Mg/Al/Zn/Ca), multivalent rechargeable batteries (MRBs) are promising alternatives to Li-ion and Pb-acid batteries for grid-scale stationary energy storage applications. However, the high performance of inorganic electrode materials in Li-ion batteries does not extend to MRBs, because the high charge density of multivalent cations dramatically reduces their diffusivity in the crystal lattice of inorganic materials. To achieve high-performance MRBs, organic electrode materials (OEMs) with abundant structural diversity and high structural tunability offer opportunities. This review presents an overview of the state-of-the-art OEMs in MRBs, including non-aqueous rechargeable Mg/Al/Zn and aqueous rechargeable Mg/Al/Zn/Ca batteries. The advantages, challenges, development, mechanism, structure, and performance of OEMs in MRBs are discussed in detail. To provide a comprehensive and thorough understanding of OEMs in MRBs, the correlation between molecular structure and electrochemical behavior is also summarized and discussed. This review offers insights for the rational structure design and performance optimization of advanced OEMs in MRBs. 
    more » « less