skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Genome of Plasmodium gonderi : Insights into the Evolution of Human Malaria Parasites
Abstract Plasmodium species causing malaria in humans are not monophyletic, sharing common ancestors with nonhuman primate parasites. Plasmodium gonderi is one of the few known Plasmodium species infecting African old-world monkeys that are not found in apes. This study reports a de novo assembled P. gonderi genome with complete chromosomes. The P. gonderi genome shares codon usage, syntenic blocks, and other characteristics with the human parasites Plasmodium ovale s.l. and Plasmodium malariae, also of African origin, and the human parasite Plasmodium vivax and species found in nonhuman primates from Southeast Asia. Using phylogenetically aware methods, newly identified syntenic blocks were found enriched with conserved metabolic genes. Regions outside those blocks harbored genes encoding proteins involved in the vertebrate host-Plasmodium relationship undergoing faster evolution. Such genome architecture may have facilitated colonizing vertebrate hosts. Phylogenomic analyses estimated the common ancestor between P. vivax and an African ape parasite P. vivax-like, within the Asian nonhuman primates parasites clade. Time estimates incorporating P. gonderi placed the P. vivax and P. vivax-like common ancestor in the late Pleistocene, a time of active migration of hominids between Africa and Asia. Thus, phylogenomic and time-tree analyses are consistent with an Asian origin for P. vivax and an introduction of P. vivax-like into Africa. Unlike other studies, time estimates for the clade with Plasmodium falciparum, the most lethal human malaria parasite, coincide with their host species radiation, African hominids. Overall, the newly assembled genome presented here has the quality to support comparative genomic investigations in Plasmodium.  more » « less
Award ID(s):
2146653
PAR ID:
10492924
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Genome Biology and Evolution
Volume:
16
Issue:
2
ISSN:
1759-6653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Extrinsic environmental factors influence the spatiotemporal dynamics of many organisms, including insects that transmit the pathogens responsible for vector‐borne diseases (VBDs). Temperature is an especially important constraint on the fitness of a wide variety of ectothermic insects. A mechanistic understanding of how temperature impacts traits of ectotherms, and thus the distribution of ectotherms and vector‐borne infections, is key to predicting the consequences of climate change on transmission of VBDs like malaria. However, the response of transmission to temperature and other drivers is complex, as thermal traits of ectotherms are typically nonlinear, and they interact to determine transmission constraints. In this study, we assess and compare the effect of temperature on the transmission of two malaria parasites,Plasmodium falciparumandPlasmodium vivax, by two malaria vector species,Anopheles gambiaeandAnopheles stephensi. We model the nonlinear responses of temperature dependent mosquito and parasite traits (mosquito development rate, bite rate, fecundity, proportion of eggs surviving to adulthood, vector competence, mortality rate, and parasite development rate) and incorporate these traits into a suitability metric based on a model for the basic reproductive number across temperatures. Our model predicts that the optimum temperature for transmission suitability is similar for the four mosquito–parasite combinations assessed in this study, but may differ at the thermal limits. More specifically, we found significant differences in the upper thermal limit between parasites spread by the same mosquito (A. stephensi) and between mosquitoes carryingP. falciparum. In contrast, at the lower thermal limit the significant differences were primarily between the mosquito species that both carried the same pathogen (e.g.,A. stephensiandA. gambiaeboth withP. falciparum). Using prevalence data, we show that the transmission suitability metric calculated from our mechanistic model is consistent with observedP. falciparumprevalence in Africa and Asia but is equivocal forP. vivaxprevalence in Asia, and inconsistent withP. vivaxprevalence in Africa. We mapped risk to illustrate the number of months various areas in Africa and Asia predicted to be suitable for malaria transmission based on this suitability metric. This mapping provides spatially explicit predictions for suitability and transmission risk. 
    more » « less
  2. During infections with the malaria parasitesPlasmodium vivax, patients exhibit rhythmic fevers every 48 h. These fever cycles correspond with the time the parasites take to traverse the intraerythrocytic cycle (IEC). In otherPlasmodiumspecies that infect either humans or mice, the IEC is likely guided by a parasite-intrinsic clock [Rijo-Ferreiraet al.,Science368, 746–753 (2020); Smithet al.,Science368, 754–759 (2020)], suggesting that intrinsic clock mechanisms may be a fundamental feature of malaria parasites. Moreover, becausePlasmodiumcycle times are multiples of 24 h, the IECs may be coordinated with the host circadian clock(s). Such coordination could explain the synchronization of the parasite population in the host and enable alignment of IEC and circadian cycle phases. We utilized an ex vivo culture of whole blood from patients infected withP. vivaxto examine the dynamics of the host circadian transcriptome and the parasite IEC transcriptome. Transcriptome dynamics revealed that the phases of the host circadian cycle and the parasite IEC are correlated across multiple patients, showing that the cycles are phase coupled. In mouse model systems, host–parasite cycle coupling appears to provide a selective advantage for the parasite. Thus, understanding how host and parasite cycles are coupled in humans could enable antimalarial therapies that disrupt this coupling. 
    more » « less
  3. Abstract Malaria-causing protozoa of the genusPlasmodiumhave exerted one of the strongest selective pressures on the human genome, and resistance alleles provide biomolecular footprints that outline the historical reach of these species1. Nevertheless, debate persists over when and how malaria parasites emerged as human pathogens and spread around the globe1,2. To address these questions, we generated high-coverage ancient mitochondrial and nuclear genome-wide data fromP. falciparum,P. vivaxandP. malariaefrom 16 countries spanning around 5,500 years of human history. We identifiedP. vivaxandP. falciparumacross geographically disparate regions of Eurasia from as early as the fourth and first millenniabce, respectively; forP. vivax, this evidence pre-dates textual references by several millennia3. Genomic analysis supports distinct disease histories forP. falciparumandP. vivaxin the Americas: similarities between now-eliminated European and peri-contact South American strains indicate that European colonizers were the source of AmericanP. vivax, whereas the trans-Atlantic slave trade probably introducedP. falciparuminto the Americas. Our data underscore the role of cross-cultural contacts in the dissemination of malaria, laying the biomolecular foundation for future palaeo-epidemiological research into the impact ofPlasmodiumparasites on human history. Finally, our unexpected discovery ofP. falciparumin the high-altitude Himalayas provides a rare case study in which individual mobility can be inferred from infection status, adding to our knowledge of cross-cultural connectivity in the region nearly three millennia ago. 
    more » « less
  4. Enhanced and rapid surveillance for diseases is critical to public health and meeting United Nations' Sustainable Development Goal for Good Health and Well‐being by allowing for targeted and accelerated prevention and control response strategies. Human malaria, caused byPlasmodiumspp. and transmitted by mosquitoes is no exception. Advances in sustainable materials provide an opportunity to improve fast, sustainable, and equitable testing assays. Here, naturally abundant polymers and biomaterials, such as cellulose nanocrystals (CNCs) and chitosan, were used to increase antibody density deposition on the assay detection line when compared to traditional free antibody deposition, and thus the sensitivity, of easily assembled rapid tests designed to detectPlasmodium vivaxinfective (sporozoite) parasites in mosquitoes, a critical indicator of malaria transmission. The immobilization of antibodies onto chitosan‐coated CNCs allowed for antigen detection with a lower number of antibodies used in each test; likewise, the immobilization allowed to directly place the CNC‐Ab without the traditionally needed blockers layer on the paper like bovine serum albumin (BSA). This bio‐based prototype of a paper‐based dipstick assay shows a promising pathway for the development of rapid disease surveillance tools using sustainable and globally available materials. 
    more » « less
  5. Abstract BackgroundAnopheles stephensiis a malaria-transmitting mosquito that has recently expanded from its primary range in Asia and the Middle East, to locations in Africa. This species is a competent vector of bothPlasmodium falciparumandPlasmodium vivaxmalaria. Perhaps most alarming, the characteristics ofAn.stephensi, such as container breeding and anthropophily, make it particularly adept at exploiting built environments in areas with no prior history of malaria risk. MethodsIn this paper, global maps of thermal transmission suitability and people at risk (PAR) for malaria transmission byAn.stephensiwere created, under current and future climate. Temperature-dependent transmission suitability thresholds derived from recently published species-specific thermal curves were used to threshold gridded, monthly mean temperatures under current and future climatic conditions. These temperature driven transmission models were coupled with gridded population data for 2020 and 2050, under climate-matched scenarios for future outcomes, to compare with baseline predictions for 2020 populations. ResultsUsing the Global Burden of Disease regions approach revealed that heterogenous regional increases and decreases in risk did not mask the overall pattern of massive increases of PAR for malaria transmission suitability withAn.stephensipresence. General patterns of poleward expansion for thermal suitability were seen for bothP.falciparumandP.vivaxtransmission potential. ConclusionsUnderstanding the potential suitability forAn.stephensitransmission in a changing climate provides a key tool for planning, given an ongoing invasion and expansion of the vector. Anticipating the potential impact of onward expansion to transmission suitable areas, and the size of population at risk under future climate scenarios, and where they occur, can serve as a large-scale call for attention, planning, and monitoring. 
    more » « less