skip to main content


This content will become publicly available on February 28, 2025

Title: High‐Resolution Imaging of the Alaska‐Aleutian Megathrust Using P‐to‐S Mode Conversions From Local In‐Slab Earthquakes
Abstract

The top of the subducting plate is a thick, complex zone where the heterogeneous structure likely controls earthquake rupture processes. Imaging this heterogeneous channel typically involves active‐source methods with limited depth penetration, or low‐resolution teleseismic methods. To access short wavelengths at greater depth, we use high‐frequency P‐to‐S (PS, 1–15 Hz) mode‐converted arrivals from nearby earthquakes >50 km deep to image the plate interface at vertical scales <1 km. We use 37 broadband stations in southcentral Alaska between 2007 and 2008 at 10–15 km spacing, spanning the great 1964 earthquake rupture zone and adjacent deeper slow slip and tremor regions. The central 21 stations record high‐amplitude PS arrivals converting from the megathrust region, at depths corresponding to the top of a prominent low‐velocity zone (LVZ) in receiver function images. The PS/P amplitude ratio (APS_P) varies along strike and with depth of the conversion point but is independent of earthquake location and varies slowly between adjacent stations. APS_Pchanges with slab depth, indicating changes in lithology or fluid content of the plate interface, consistent with transitions in slip behavior from locked to slow slip. High APS_Pcannot be explained by a velocity step or a single low‐velocity, high Vp/Vs layer, but requires several alternating high and low‐velocity layers. These observations indicate that the LVZ is a highly heterogeneous channel at multiple scales, resembling a subduction channel or sheared zone of metasediment and altered crust as observed in many exhumed subduction zones.

 
more » « less
NSF-PAR ID:
10492993
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
129
Issue:
3
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We investigated the seismic velocity structure of the Hikurangi margin in New Zealand to uncover the physical features of the subduction zone and explore the relationships between microearthquake seismicity, seismic velocity structure, and slow slip events. Using local earthquake tomography with data collected from both temporary ocean bottom seismometers and on‐land permanent seismic stations, we used the tomography code TomoFD to iteratively perform a damped least squared inversion of absolute P and S arrival times to obtain relocated hypocenters and generate 3D velocity models for Vp and Vp/Vs. The seismic tomography images show two high Vp/Vs anomalies, one offshore and adjacent to a subducted seamount and the other beneath the North Island of New Zealand. The ∼50‐km wide offshore anomaly extends ∼10 km beneath the plate interface and lies directly beneath the area that slipped at least 50 mm during the 2 week‐long 2014 slow slip event. High Vp/Vs values may be related to high pore fluid pressures from subducted sediments, and such increases in pore fluid pressures have been suggested to trigger the occurrence of slow slip events in active subduction zones. The second onshore high Vp/Vs anomaly is located in the overlying plate and subducting slab and correlates with areas suggested by other geophysical techniques to be rich in fluids. Our seismic imaging supports interpretations that subduction processes in the Hikurangi margin are highly dependent on physical features such as subducted seamounts and fluid‐rich sediments.

     
    more » « less
  2. Abstract

    Long‐term slow slip events have been observed at several subduction zones around the globe, where they play an integral part in strain release along megathrust faults. Nevertheless, evidence for long‐term slow slip has remained elusive in the Cascadia subduction zone. Here we conduct a systematic analysis of 13 years of GNSS time series data from 2006 to 2019 and present evidence of at least one low‐amplitude long‐term slow slip event on the Cascadia subduction zone, with the possibility of others that are less resolved. Starting in mid‐2012, a 1.5‐year transient is observed in southern Cascadia, with a group of coastal GNSS stations moving ∼2 mm to the west. The data are modeled as a Mw 6.4 slow slip event occurring at 15–35 km depth on the plate interface, just updip of previously recognized short‐term slow slip and tremor. The event shares many characteristics with similar long‐term transient events on the Nankai subduction zone. However, the total fault slip amplitude is an order‐of‐magnitude smaller in Cascadia when compared to large events elsewhere, making long‐term slow slip detection challenging in Cascadia. While there are other westward long‐duration transients in the refined data set, the surface displacements are below the level of the noise or are limited spatially to a few neighboring stations, making interpretation unclear.

     
    more » « less
  3. Abstract

    The heterogeneous seafloor topography of the Nazca Plate as it enters the Ecuador subduction zone provides an opportunity to document the influence of seafloor roughness on slip behavior and megathrust rupture. The 2016 Mw7.8 Pedernales Ecuador earthquake was followed by a rich and active postseismic sequence. An internationally coordinated rapid response effort installed a temporary seismic network to densify coastal stations of the permanent Ecuadorian national seismic network. A combination of 82 onshore short and intermediate period and broadband seismic stations and six ocean bottom seismometers recorded the postseismic Pedernales sequence for over a year after the mainshock. A robust earthquake catalog combined with calibrated relocations for a subset of magnitude ≥4 earthquakes shows pronounced spatial and temporal clustering. A range of slip behavior accommodates postseismic deformation including earthquakes, slow slip events, and earthquake swarms. Models of plate coupling and the consistency of earthquake clustering and slip behavior through multiple seismic cycles reveal a segmented subduction zone primarily controlled by subducted seafloor topography, accreted terranes, and inherited structure. The 2016 Pedernales mainshock triggered moderate to strong earthquakes (5 ≤ M ≤ 7) and earthquake swarms north of the mainshock rupture close to the epicenter of the 1906 Mw8.8 earthquake and in the segment of the subduction zone that ruptured in 1958 in a Mw7.7 earthquake.

     
    more » « less
  4. Abstract

    Seamounts are found at many subduction zones and act as seafloor heterogeneities that affect slip behavior on megathrusts. At the Hikurangi subduction zone offshore the North Island, New Zealand, seamounts have been identified on the incoming Pacific plate and below the accretionary prism, but there is little concrete evidence for seamounts subducted beyond the present‐day coastline. Using a high‐resolution, adjoint tomography‐derived velocity model of the North Island, we identify two high‐velocity anomalies below the East Coast and an intraslab low‐velocity zone up‐dip of one of these anomalies. We interpret the high‐velocity anomalies as previously unidentified, deeply subducted seamounts, and the low‐velocity zone as fluid in the subducting slab. The seamounts are inferred to be 10–30 km wide and on the plate interface at 12–15 km depth. Resolution analysis using point spread functions confirms that these are well‐resolved features. The locations of the two seamounts coincide with bathymetric features whose geometries are consistent with those predicted from analog experiments and numerical simulations of seamount subduction. The spatial characteristics of seismicity and slow slip events near the inferred seamounts agree well with previous numerical modeling predictions of the effects of seamount subduction on megathrust stress and slip. Anomalous geophysical signatures, magnetic anomalies, and swarm seismicity have also been observed previously at one or both seamount locations. We propose that permanent fracturing of the northern Hikurangi upper plate by repeated seamount subduction may be responsible for the dichotomous slow slip behavior observed geodetically, and partly responsible for along‐strike variations in plate coupling on the Hikurangi subduction interface.

     
    more » « less
  5. Subduction of the very young (<15 Myr old) oceanic lithosphere of the Nazca plate in central to southern Colombia is observationally related to an unusually high and unusually variable amount of intermediate (>50 km) depth seismicity. From 2010 through 2019 89% of central and southern Colombia’s 11,466 intermediate depth events occurred between 3.5°N and 5.5°N, highlighting these unusual characteristics of the young slab. In addition, morphologic complexity and possible tears characterize the Nazca slab in Colombia and complicate mantle flow in the region. Prior SKS-phase shear-wave splitting results indicate sub-slab anisotropy is dominated by plate motion parallel-to-subparallel orientations in the region, suggesting the young slab has entrained a relatively thick portion of the sub-slab mantle. These observations suggest the subduction of young lithosphere has significant effects on both the overlying and underlying asthenosphere in the Colombia subduction zone. Here we use more than 10 years of data to calculate receiver functions for the Red Sismológica Nacional de Colombia’s network of broadband seismometers. These receiver functions allow us to tie these prior observations of the Colombia subduction zone to distinct, structural features of the slab. We find that the region of high seismicity corresponds to a low seismic velocity feature along the top of the subducting plate between 3.5°N and 5.5°N that is not present to the south. Moderately elevated P-wave velocity to S-wave velocity ratios are also observed within the slab in the north. This feature likely represents hydrated slab mantle and/or uneclogitized oceanic crust extending to a deeper depth in the north of the region which may provide fluids to drive slab seismicity. We further find evidence for a thick layer of material along the slab’s lithosphere-asthenosphere boundary characterized by spatially variable anisotropy. This feature likely represents entrained asthenosphere at the base of the plate sheared by both the overlying plate and complex flow related to proposed slab tears just north and south of the study region. These observations highlight how structural observations provide key contextual constraints on short-term (seismogenic) and long-term (anisotropic fabric) dynamic processes in the Colombia subduction zone. Plain-language Summary The Nazca oceanic plate is very young (<15 million years old) where it is pulled or subducted beneath the South America plate in central and southern Colombia. Earthquakes occurring in the subducted Nazca plate at depths greater than 50 km are nearly 9x more common in central Colombia than in southern Colombia. The subducted Nazca plate also has a complex shape in this region and may have been torn both in northern Colombia and to the south near the Colombia-Ecuador border. The slow flow of mantle rock beneath the subducted plate is believed to be affected by this and earlier studies have inferred this flow is mostly in the same direction as the subducting plate's motion. We have used 10+ years of data to calculate receiver functions, which can detect changes in the velocity of seismic waves at the top and bottom of the subducted plate to investigate these features. We found that the Nazca plate is either hydrated or has rocks with lower seismic velocities at its top in the central part of Colombia where earthquakes are common. We also find that a thick layer of mantle rock at the base of the subducted plate has been sheared. 
    more » « less