skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Elephant Trunk Inspired Multimodal Deformations and Movements of Soft Robotic Arms
Abstract Elephant trunks are capable of complex, multimodal deformations, allowing them to perform task‐oriented high‐degree‐of‐freedom (DOF) movements pertinent to the field of soft actuators. Despite recent advances, most soft actuators can only achieve one or two deformation modes, limiting their motion range and applications. Inspired by the elephant trunk musculature, a liquid crystal elastomer (LCE)‐based multi‐fiber design strategy is proposed for soft robotic arms in which a discrete number of artificial muscle fibers can be selectively actuated, achieving multimodal deformations and transitions between modes for continuous movements. Through experiments, finite element analysis (FEA), and a theoretical model, the influence of LCE fiber design on the achievable deformations, movements, and reachability of trunk‐inspired robotic arms is studied. Fiber geometry is parametrically investigated for 2‐fiber robotic arms and the tilting and bending of these arms is characterized. A 3‐fiber robotic arm is additionally studied with a simplified fiber arrangement analogous to that of an actual elephant trunk. The remarkably broad range of deformations and the reachability of the arm are discussed, alongside transitions between deformation modes for functional movements. It is anticipated that this design and actuation strategy will serve as a robust method to realize high‐DOF soft actuators for various engineering applications.  more » « less
Award ID(s):
2318188
PAR ID:
10492994
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
34
Issue:
29
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the field of soft robotics, flexibility, adaptability, and functionality define a new era of robotic systems that can safely deform, reach, and grasp. To optimize the design of soft robotic systems, it is critical to understand their configuration space and full range of motion across a wide variety of design parameters. Here we integrate extreme mechanics and soft robotics to provide quantitative insights into the design of bio-inspired soft slender manipulators using the concept of reachability clouds. For a minimal three-actuator design inspired by the elephant trunk, we establish an efficient and robust reduced-order method to generate reachability clouds of almost half a million points each to visualize the accessible workspace of a wide variety of manipulator designs. We generate an atlas of 256 reachability clouds by systematically varying the key design parameters including the fiber count, revolution, tapering angle, and activation magnitude. Our results demonstrate that reachability clouds not only offer an immediately clear perspective into the inverse problem of control, but also introduce powerful metrics to characterize reachable volumes, unreachable regions, and actuator redundancy to quantify the performance of soft slender robots. 
    more » « less
  2. Soft actuators have been studied and analyzed as a new solution for soft robotic technologies. These types of actuators have many advantages due to their predictable deformations and their ease of control, enabling them to hold and move delicate objects performing complex movements in confined spaces. Soft actuators can be made using different manufacturing processes, but the most common is mold casting. However, this manufacturing process involves several steps, increasing the manufacturing time and hindering changes in the design. This paper presents a novel design of a 3D printed soft pneumatic actuator based on additive manufacturing, achieving design versatility and performance. The produced actuator has seven segments that can be individually controlled. The actuators were made using fused deposition modeling (FDM) technology in one continuous process and without support material. The mechanical performance of the soft actuators was demonstrated, analyzing the deformation in the z-axis based on input pressure. 
    more » « less
  3. Bending permits soft arms to access a workspace that is not colinear with the initial arm axis; the size and shape of this space depends on the characteristics of the soft arm. Soft bending actuators and arms have developed for specific applications, but not characterized for the general relationship between design variables and performance. This paper defines a class of soft bending arms based on its design, considering the arm as a system constructed from many contracting actuators organized into segments. A modular segment design is presented, and seven variants of this design were constructed and tested for bend radius, bend direction, lateral stiffness and contraction. The variants isolate system parameters, in this case, arm radius and number of actuators within a given segment, to quantify how these parameters affect performance. A trade-off was found between lateral stiffness and bend radius, which can be controlled by altering the arm radius or the number of actuators. Bend direction was found to be coupled to both bend radius and arm load. Finally, a three-segment arm following a bio-inspired design is presented to demonstrate how the experimental results apply to soft robot system design. 
    more » « less
  4. null (Ed.)
    In recent years, there has been an increasing interest in the research in soft actuators that exhibit complex programmable deformations. Soft electrothermal actuators use electricity as the stimulus to generate heat, and the mismatch between the thermal expansions of the two structural layers causes the actuator to bend. Complex programmable deformations of soft electrothermal actuators are difficult due to the limitations of the conventional fabrication methods. In this article, we report a new approach to fabricate soft electrothermal actuators, in which the resistive heater of the electrothermal actuator is directly printed using electrohydrodynamic (EHD) printing. The direct patterning capabilities of EHD printing allow the free-form design of the heater. By changing the design of the heating pattern on the actuator, different heat distributions can be achieved and utilized to realize complex programmable deformations, including uniform bending, customized bending, folding, and twisting. Finite element analysis (FEA) was used to validate the thermal distribution and deformation for different actuator designs. Lastly, several integrated demonstrations are presented, including complex structures obtained from folding, a two-degree-of-freedom soft robotic arm, and soft walkers. 
    more » « less
  5. Abstract Elephants have long been observed to grip objects with their trunk, but little is known about how they adjust their strategy for different weights. In this study, we challenge a female African elephant at Zoo Atlanta to lift 20–60 kg barbell weights with only its trunk. We measure the trunk’s shape and wrinkle geometry from a frozen elephant trunk at the Smithsonian. We observe several strategies employed to accommodate heavier weights, including accelerating less, orienting the trunk vertically, and wrapping the barbell with a greater trunk length. Mathematical models show that increasing barbell weights are associated with constant trunk tensile force and an increasing barbell-wrapping surface area due to the trunk’s wrinkles. Our findings may inspire the design of more adaptable soft robotic grippers that can improve grip using surface morphology such as wrinkles. 
    more » « less