skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Syntrichia ruralis : emerging model moss genome reveals a conserved and previously unknown regulator of desiccation in flowering plants
Summary Water scarcity, resulting from climate change, poses a significant threat to ecosystems.Syntrichia ruralis, a dryland desiccation‐tolerant moss, provides valuable insights into survival of water‐limited conditions.We sequenced the genome ofS. ruralis, conducted transcriptomic analyses, and performed comparative genomic and transcriptomic analyses with existing genomes and transcriptomes, including with the close relativeS. caninervis. We took a genetic approach to characterize the role of anS. ruralistranscription factor, identified in transcriptomic analyses, inArabidopsis thaliana.The genome was assembled into 12 chromosomes encompassing 21 169 protein‐coding genes. Comparative analysis revealed copy number and transcript abundance differences in known desiccation‐associated gene families, and highlighted genome‐level variation among species that may reflect adaptation to different habitats. A significant number of abscisic acid (ABA)‐responsive genes were found to be negatively regulated by a MYB transcription factor (MYB55) that was upstream of theS. ruralisortholog of ABA‐insensitive 3 (ABI3). We determined that this conserved MYB transcription factor, uncharacterized inArabidopsis, acts as a negative regulator of an ABA‐dependent stress response inArabidopsis.The new genomic resources from this emerging model moss offer novel insights into how plants regulate their responses to water deprivation.  more » « less
Award ID(s):
2023310 2102120
PAR ID:
10493007
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
243
Issue:
3
ISSN:
0028-646X
Format(s):
Medium: X Size: p. 981-996
Size(s):
p. 981-996
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary With global climate change, water scarcity threatens whole agro/ecosystems. The desert mossSyntrichia caninervis, an extremophile, offers novel insights into surviving desiccation and heat. The sequencedS. caninervisgenome consists of 13 chromosomes containing 16 545 protein‐coding genes and 2666 unplaced scaffolds. Syntenic relationships within theS.caninervisandPhyscomitrellapatensgenomes indicate theS. caninervisgenome has undergone a single whole genome duplication event (compared to two forP. patens) and evidence suggests chromosomal or segmental losses in the evolutionary history ofS. caninervis. The genome contains a large sex chromosome composed primarily of repetitive sequences with a large number ofCopiaandGypsyelements. Orthogroup analyses revealed an expansion ofELIPgenes encoding proteins important in photoprotection. The transcriptomic response to desiccation identified four structural clusters of novel genes. The genomic resources established for this extremophile offer new perspectives for understanding the evolution of desiccation tolerance in plants. 
    more » « less
  2. Summary In this study, we investigate the genetic mechanisms responsible for the loss of anthocyanins in betalain‐pigmented Caryophyllales, considering our hypothesis of multiple transitions to betalain pigmentation.Utilizing transcriptomic and genomic datasets across 357 species and 31 families, we scrutinize 18 flavonoid pathway genes and six regulatory genes spanning four transitions to betalain pigmentation. We examined evidence for hypotheses of wholesale gene loss, modified gene function, altered gene expression, and degeneration of the MBW (MYB‐bHLH‐WD40) trasnscription factor complex, within betalain‐pigmented lineages.Our analyses reveal that most flavonoid synthesis genes remain conserved in betalain‐pigmented lineages, with the notable exception ofTT19orthologs, essential for the final step in anthocyanidin synthesis, which appear to have been repeatedly and entirely lost. Additional late‐stage flavonoid pathway genes upstream ofTT19also manifest strikingly reduced expression in betalain‐pigmented species. Additionally, we find repeated loss and alteration in the MBW transcription complex essential for canonical anthocyanin synthesis.Consequently, the loss and exclusion of anthocyanins in betalain‐pigmented species appear to be orchestrated through several mechanisms: loss of a key enzyme, downregulation of synthesis genes, and degeneration of regulatory complexes. These changes have occurred iteratively in Caryophyllales, often coinciding with evolutionary transitions to betalain pigmentation. 
    more » « less
  3. Summary Phytoplasmas are specialized phloem‐limited bacteria that cause diseases on various crops, resulting in significant agricultural losses. This research focuses on the jujube witches' broom (JWB) phytoplasma and investigates the host‐manipulating activity of the effector SJP39.We found that SJP39 directly interacts with the plant transcription factor bHLH87 in the nuclei. SJP39 stabilizes the bHLH87 homologs inArabidopsis thalianaand jujube, leading to growth defects in the plants.Transcriptomic analysis indicates that SJP39 affects the gibberellin (GA) pathway in jujube. We further demonstrate that ZjbHLH87 regulates GA signaling as a negative regulator, and SJP39 enhances this regulation.The research offers important insights into the pathogenesis of JWB disease and identified SJP39 as a virulence factor that can contribute to the growth defects caused by JWB phytoplasma infection. These findings open new opportunities to manage JWB and other phytoplasma diseases. 
    more » « less
  4. Summary Plant secondary growth drives stem thickening and biomass accumulation, but its regulation is not yet fully understood.We have identified a novel semi‐dominant mutant,rbe‐d, characterized by a significant reduction in cambium cells and a complete absence of secondary growth in interfascicular regions in the stem. Gene cloning experiments indicated that the activation of the C2H2 zinc finger transcription factor, AT5G06070/RABBIT EARS (RBE), is responsible for therbe‐dphenotype.Transgenic analysis confirmed that overexpression of RBE represses secondary growth, while therbe‐2mutant increased the width of the interfascicular cambium‐derived (ICD) region. TheRBEgene is expressed in the procambium and cambium regions. Transcriptomic analysis showed that genes of the tracheary element differentiation inhibitory factor‐phloem intercalated with xylem (TDIF‐PXY) central regulatory pathway are repressed in therbe‐dmutant plants. Biochemical analyses confirmed that RBE binds directly to the promoter of WUSCHEL‐related homeobox (WOX4), a TDIF‐PXY downstreamWOXgene that regulates cambium cell proliferation. Moreover, genetic analysis confirmed thatWOX4is epistatic toRBEin secondary growth.Our results indicate that RBE inhibits cambium proliferation and thereby impacts secondary growth by directly repressingWOX4. These findings offer valuable new insight into the regulation of secondary growth in the Arabidopsis stem. 
    more » « less
  5. Summary Arsenic poses a global threat to living organisms, compromising crop security and yield. Limited understanding of the transcriptional network integrating arsenic‐tolerance mechanisms with plant developmental responses hinders the development of strategies against this toxic metalloid.Here, we conducted a high‐throughput yeast one‐hybrid assay using as baits the promoter region from the arsenic‐inducible genesARQ1andASK18fromArabidopsis thaliana, coupled with a transcriptomic analysis, to uncover novel transcriptional regulators of the arsenic response.We identified the GLABRA2 (GL2) transcription factor as a novel regulator of arsenic tolerance, revealing a wider regulatory role beyond its established function as a repressor of root hair formation. Furthermore, we found that ANTHOCYANINLESS2 (ANL2), a GL2 subfamily member, acts redundantly with this transcription factor in the regulation of arsenic signaling. Both transcription factors act as repressors of arsenic response.gl2andanl2mutants exhibit enhanced tolerance and reduced arsenic accumulation. Transcriptional analysis in thegl2mutant unveils potential regulators of arsenic tolerance.These findings highlight GL2 and ANL2 as novel integrators of the arsenic response with developmental outcomes, offering insights for developing safer crops with reduced arsenic content and increased tolerance to this hazardous metalloid. 
    more » « less