Abstract We study the collapse and expansion of a cavitation bubble in a deformable porous medium. We develop a continuum-scale model that couples compressible fluid flow in the pore network with the elastic response of a solid skeleton. Under the assumption of spherical symmetry, our model can be reduced to an ordinary differential equation that extends the Rayleigh–Plesset equation to bubbles in soft porous media. The extended Rayleigh–Plesset equation reveals that finite-size effects lead to the breakdown of the universal scaling relation between bubble radius and time that holds in the infinite-size limit. Our data indicate that the deformability of the porous medium slows down the collapse and expansion processes, a result with important consequences for wide-ranging phenomena, from drug delivery to spore dispersion.
more »
« less
Characterization of Bubble Transport in Porous Media Using a Microfluidic Channel
This study investigates the effect on varying flow rates and bubble sizes on gas–liquid flow through porous media in a horizontal microchannel. A simple bubble generation system was set up to generate bubbles with controllable sizes and frequencies, which directly flowed into microfluidic channels packed with different sizes of glass beads. Bubble flow was visualized using a high-speed camera and analyzed to obtain the change in liquid holdup. Pressure data were measured for estimation of hydraulic conductivity. The bubble displacement pattern in the porous media was viscous fingering based on capillary numbers and visual observation. Larger bubbles resulted in lower normalized frequency of the bubble breakthrough by 20 to 60 percent. Increasing the flow rate increased the change in apparent liquid holdup during bubble breakthrough. Larger bubbles and lower flow rate reduced the relative permeability of each channel by 50 to 57 percent and 30 to 64 percent, respectively.
more »
« less
- PAR ID:
- 10493052
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Water
- Volume:
- 15
- Issue:
- 6
- ISSN:
- 2073-4441
- Page Range / eLocation ID:
- 1033
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this work, we present a proof of concept for both 3D-printed media and a machine learning analysis methodology to investigate void formation and transport during liquid filling. Through a series of experiments, we characterized void formation and transport at constant flow rates using two calibrated fabric-like porous geometries created by Stereolithography and Multi Jet Fusion 3D printing techniques. Our findings highlight the significance of porous medium geometry and void size, in addition to the capillary number, in characterizing void formation and mobility during resin flow into a mold containing a fibrous preform. Notably, the paper's strength lies in the presentation of advanced bubble analysis methods, including frame-by-frame high-resolution video analysis, enabling the identification of individual bubbles and the extraction of their statistics, such as count, size, and velocity throughout the experiment. These insights contribute to the design of more efficient processes, resulting in composite parts with reduced void content.more » « less
-
Abstract Most lava flows carry bubbles and crystals in suspension. From earlier works, it is known that spherical bubbles increase the effective viscosity while bubbles deformed by rapid flow decrease it. Changes in the spatial distribution of bubbles can lead to variable rheology and flow localization and thus modify the resulting lava flow structure and morphology. To understand the roles of bubble and solid phase crystal distributions, we conducted a series of analog experiments of high bubble fraction suspensions. We poured the analog lava on an inclined slope, observed its shape, calculated the velocity field, and monitored its local thickness. A region of localized rapid flow and low vesicularity, whose thickness is thinner than the surrounding area, develops at the center of the bubbly flows. These features suggest that the locally higher liquid fraction decreases the effective viscosity, increases the fluid density, and accelerates the flow. We also found that a halted particle‐bearing bubbly flow can resume flowing. We interpret this to result from the upward vertical separation of bubbles, which generates a liquid‐rich layer at the bottom of the flow. In our experiment, bubbles are basically spherical and decrease the flow velocity, while our estimate suggests that bubbles in natural lava flows could increase or decrease flow velocity. Downstream decreases in flow velocity stops the bubble deformation and can cause a sudden increase of effective viscosity. The vertical segregation of the liquid phase at the slowed flow front may be a way to generate a cavernous shelly paho’eho’e.more » « less
-
Abstract Bubbles will rest at the surface of a liquid bath until their spherical cap drains sufficiently to spontaneously rupture. For large film caps, the memory of initial conditions is believed to be erased due to a visco-gravitational flow, whose velocity increases from the top of the bubble to its base. Consequently, the film thickness has been calculated to be relatively uniform as it thins, regardless of whether the drainage is regulated by shear or elongation. Here, we demonstrate that for large bare bubbles, the film thickness is highly nonuniform throughout drainage, spanning orders of magnitude from top to base. We link the film thickness profile to a universal non-monotonic drainage flow that depends on the bubble thinning rate. These results highlight an unexpected coupling between drainage velocity and bubble thickness profiles and provide critical insight needed to understand the retraction and breakup dynamics of these bubbles upon rupture.more » « less
-
ABSTRACT An important characteristic of cosmic hydrogen reionization is the growth of ionized gas bubbles surrounding early luminous objects. Ionized bubble sizes are beginning to be probed using Lyman α emission from high-redshift galaxies, and will also be probed by upcoming 21 cm maps. We present results from a study of bubble sizes using the state-of-the-art thesan radiation-hydrodynamics simulation suite, which self-consistently models radiation transport and realistic galaxy formation. We employ the mean free path method and track the evolution of the effective ionized bubble size at each point (Reff) throughout the Epoch of Reionization. We show that there is a slow growth period for regions ionized early, but a rapid ‘flash ionization’ process for regions ionized later as they immediately enter a large, pre-existing bubble. We also find that bright sources are preferentially in larger bubbles, and find consistency with recent observational constraints at z ≳ 9, but tension with idealized Lyman α damping-wing models at z ≈ 7. We find that high-overdensity regions have larger characteristic bubble sizes, but the correlation decreases as reionization progresses, likely due to runaway formation of large percolated bubbles. Finally, we compare the redshift at which a region transitions from neutral to ionized (zreion) with the time it takes to reach a given bubble size and conclude that zreion is a reasonable local probe of small-scale bubble size statistics ($$R_\text{eff} \lesssim 1\, \rm {cMpc}$$). However, for larger bubbles, the correspondence between zreion and size statistics weakens due to the time delay between the onset of reionization and the expansion of large bubbles, particularly at high redshifts.more » « less
An official website of the United States government

