skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 15 until 2:00 AM ET on Saturday, November 16 due to maintenance. We apologize for the inconvenience.


Title: Reduced male fertility of an Antarctic mite following extreme heat stress could prompt localized population declines
Climate change is leading to substantial global thermal changes, which are particularly pronounced in polar regions. Few studies have examined the impact of heat stress on reproduction in Antarctic terrestrial arthropods, specifically how brief, extreme events may alter survival. We observed that sublethal heat stress reduces male fecundity in an Antarctic mite, yielding females that produced fewer viable eggs. Females and males collected from microhabitats with high temperatures showed a similar reduction in fertility. This impact is temporary, as indicated by recovery of male fecundity following return to cooler, stable conditions. The diminished fecundity is likely due to a drastic reduction in the expression of male-associated factors that occur in tandem with a substantial increase in the expression of heat shock proteins. Cross mating between mites from different sites confirmed that heat-exposed populations have impaired male fertility. However, the impact on fertility declines with time when the mites are allowed to recover under less stressful conditions, suggesting that the negative effects are transient. Modeling indicated that heat stress is likely to reduce population growth and that short bouts of non-lethal heat stress could have substantial effects on local populations of Antarctic arthropods.  more » « less
Award ID(s):
1654417
NSF-PAR ID:
10493068
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Cell Stress and Chaperones
Volume:
28
Issue:
5
ISSN:
1355-8145
Page Range / eLocation ID:
541 to 549
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Understanding the pleiotropic consequences of gene drive systems on host fitness is essential to predict their spread through a host population. Here, we study sex-ratio (SR) X-chromosome drive in the fly Drosophila recens , where SR causes the death of Y-bearing sperm in male carriers. SR males only sire daughters, which all carry SR, thus giving the chromosome a transmission advantage. The prevalence of the SR chromosome appears stable, suggesting pleiotropic costs. It was previously shown that females homozygous for SR are sterile, and here, we test for additional fitness costs of SR. We found that females heterozygous for SR have reduced fecundity and that male SR carriers have reduced fertility in conditions of sperm competition. We then use our fitness estimates to parametrize theoretical models of SR drive and show that the decrease in fecundity and sperm competition performance can account for the observed prevalence of SR in natural populations. In addition, we found that the expected equilibrium frequency of the SR chromosome is particularly sensitive to the degree of multiple mating and performance in sperm competition. Together, our data suggest that the mating system of the organism should be carefully considered during the development of gene drive systems. 
    more » « less
  2. Abstract

    Globally invasiveAedes aegyptidisseminate numerous arboviruses that impact human health. One promising method to controlAe. aegyptipopulations is transinfection withWolbachia pipientis, which naturally infects ~40–52% of insects but notAe. aegypti. Transinfection ofAe. aegyptiwith the wMelWolbachiastrain induces cytoplasmic incompatibility (CI), allows infected individuals to invade native populations, and inhibits transmission of medically relevant arboviruses by females. Female insects undergo post-mating physiological and behavioral changes—referred to as the female post-mating response (PMR)—required for optimal fertility. PMRs are typically elicited by male seminal fluid proteins (SFPs) transferred with sperm during mating but can be modified by other factors, including microbiome composition.Wolbachiahas modest effects onAe. aegyptifertility, but its influence on other PMRs is unknown. Here, we show thatWolbachiainfluences female fecundity, fertility, and re-mating incidence and significantly extends the longevity of virgin females. Using proteomic methods to examine the seminal proteome of infected males, we found thatWolbachiamoderately affects SFP composition. However, we identified 125 paternally transferredWolbachiaproteins, but the CI factor proteins (Cifs) were not among them. Our findings indicate thatWolbachiainfection ofAe. aegyptialters female PMRs, potentially influencing control programs that utilizeWolbachia-infected individuals.

     
    more » « less
  3. Abstract

    Polyphenism allows organisms to respond to varying environmental conditions by adopting alternative collections of morphological traits, often leading to different reproductive strategies. In many insects, polyphenism affecting the development of flight trades dispersal ability for increased fecundity. The soapberry bug Jadera haematoloma (Hemiptera: Rhopalidae) exhibits wing polyphenism in response to juvenile nutritional resources and cohort density. Development of full-length wings and flight-capable thoracic muscles occurs more frequently in cohorts raised under low food density conditions, and these features are correlated to reduced female fecundity. Soapberry bugs represent an example of polyphenic dispersal-fecundity trade-off. Short-wing development is not sex-limited, and morphs can also differ in male fertility. We have previously shown, via a candidate gene approach, that manipulation of insulin signaling can alter the threshold for nutritional response and that changes in the activity of this pathway underlie, at least in part, differences in the polyphenic thresholds in different host-adapted populations of J. haematoloma. We now expand the examination of this system using transcriptome sequencing across a multidimensional matrix of life stage, tissue, sex, food density, and host population. We also examine the use of wing and thorax shape as factors modeling gene expression. In addition to insulin signaling, we find that components of the TOR, Hippo, Toll, and estrogen-related receptor pathways are differentially expressed in the thorax of polyphenic morphs. The transcription factor Sox14 was one of the few genes differentially expressed in the gonads of morphs, being up-regulated in ovaries. We identify two transcription factors as potential mediators of morph-specific male fertility differences. We also find that bugs respond to nutrient limitation with expression of genes linked to cuticle structure and spermatogenesis. These findings provide a broad perspective from which to view this nutrition-dependent polyphenism.

     
    more » « less
  4. Abstract Strict maternal transmission of mitochondrial DNA (mtDNA) is hypothesized to permit the accumulation of mitochondrial variants that are deleterious to males but not females, a phenomenon called mother’s curse. However, direct evidence that mtDNA mutations exhibit such sexually antagonistic fitness effects is sparse. Male-specific mutational effects can occur when the physiological requirements of the mitochondria differ between the sexes. Such male-specific effects could potentially occur if sex-specific cell types or tissues have energy requirements that are differentially impacted by mutations affecting energy metabolism. Here we summarize findings from a model mitochondrial–nuclear incompatibility in the fruit fly Drosophila that demonstrates sex-biased effects, but with deleterious effects that are generally larger in females. We present new results showing that the mitochondrial–nuclear incompatibility does negatively affect male fertility, but only when males are developed at high temperatures. The temperature-dependent male sterility can be partially rescued by diet, suggesting an energetic basis. Finally, we discuss fruitful paths forward in understanding the physiological scope for sex-specific effects of mitochondrial mutations in the context of the recent discovery that many aspects of metabolism are sexually dimorphic and downstream of sex-determination pathways in Drosophila. A key parameter of these models that remains to be quantified is the fraction of mitochondrial mutations with truly male-limited fitness effects across extrinsic and intrinsic environments. Given the energy demands of reproduction in females, only a small fraction of the mitochondrial mutational spectrum may have the potential to contribute to mother’s curse in natural populations. 
    more » « less
  5. null (Ed.)
    Abstract Background Patterns of gene expression can be dramatically different between males and females of the same species, in part due to genes on sex chromosomes. Here we test for sex differences in early transcriptomic response to oxidative stress in a species which lacks heteromorphic sex chromosomes, the copepod Tigriopus californicus . Results Male and female individuals were separately exposed to control conditions and pro-oxidant conditions (hydrogen peroxide and paraquat) for periods of 3 hours and 6 hours. Variance partitioning showed the greatest expression variance among individuals, highlighting the important information that can be obscured by the common practice of pooling individuals. Gene expression variance between sexes was greater than that among treatments, showing the profound effect of sex even when males and females share the same genome. Males exhibited a larger response to both pro-oxidants, differentially expressing more than four times as many genes, including up-regulation of more antioxidant genes, heat shock proteins and protease genes. While females differentially expressed fewer genes, the magnitudes of fold change were generally greater, indicating a more targeted response. Although females shared a smaller fraction of differentially expressed genes between stressors and time points, expression patterns of antioxidant and protease genes were more similar between stressors and more GO terms were shared between time points. Conclusions Early transcriptomic responses to the pro-oxidants H 2 O 2 and paraquat in copepods revealed substantial variation among individuals and between sexes. The finding of such profound sex differences in oxidative stress response, even in the absence of sex chromosomes, highlights the importance of studying both sexes and the potential for developing sex-specific strategies to promote optimal health and aging in humans. 
    more » « less