skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Total Syntheses of Scabrolide A and Yonarolide
The concise total syntheses of oxidized norcembranoid terpenoids (−)-scabrolide A and (−)-yonarolide have been accomplished in 10 and 11 steps, respectively. The carbocyclic skeleton was efficiently constructed from two chiral-pool-derived fragments, including a [5,5]-bicyclic lactone accessed through a powerful Ni-catalyzed pentannulation of functionalized cyclopentenone with methylenecyclopropane and subsequent fragmentation. Additional features included a Liebeskind–Srogl coupling, induction of a cyclization/elimination cascade by a zinc-amido base, and installation of a sensitive enedione motif by late-stage γ-oxidation.  more » « less
Award ID(s):
2154393
PAR ID:
10493172
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
145
Issue:
16
ISSN:
0002-7863
Page Range / eLocation ID:
8805 to 8809
Subject(s) / Keyword(s):
Annulations Enones Hydrocarbons Lactones Molecular structure
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The quasi-static problem describes a nonlinear porous body with a non-penetrating Barenblatt’s crack driven by the fracturing fluid, and its propagation is under investigation. By this, a bulk modulus of the porous body depends linearly on the density, the fracture faces allow contact with cohesion, and leak-off of the fluid into reservoir is accounted by the model. The mathematical problem consists in finding time-continuous functions of a displacement and a mean fluid pressure in the fracture, which satisfy the coupled system of the variational inequality and the fluid mass balance, which is controlled by the volume of fracking fluid pumped into the fracture. Well-posedness of the governing relations is proved rigorously by applying the method of Lagrange multipliers and using optimality conditions for the constrained minimization problem. As anillustrative example, a numerical benchmark problem of the fluid-driven fracture is presented in one dimension and computed by a Newton-type algorithm. 
    more » « less
  2. We address the problem of animated character motion representation and approximation by introducing a novel form of motion expression in a function space. For a given set of motions, our method extracts a set of orthonormal basis (ONB) functions. Each motion is then expressed as a vector in the ONB space or approximated by a subset of the ONB functions. Inspired by the static PCA, our approach works with the time-varying functions. The set of ONB functions is extracted from the input motions by using functional principal component analysis and it has an optimal coverage of the input motions for the given input set. We show the applications of the novel compact representation by providing a motion distance metric, motion synthesis algorithm, and a motion level of detail. Not only we can represent a motion by using the ONB; a new motion can be synthesized by optimizing connectivity of reconstructed motion functions, or by interpolating motion vectors. The quality of the approximation of the reconstructed motion can be set by defining a number of ONB functions, and this property is also used to level of detail. Our representation provides compression of the motion. Although we need to store the generated ONB that are unique for each set of input motions, we show that the compression factor of our representation is higher than for commonly used analytic function methods. Moreover, our approach also provides lower distortion rate. 
    more » « less
  3. In this paper we describe an algebraic/geometrical approach to quantum scrambling. Generalized quantum subsystems are described by an hermitian-closed unital subalgebra A of operators evolving through a unitary channel. Qualitatively, quantum scrambling is defined by how the associated physical degrees of freedom get mixed up with others by the dynamics. Quantitatively, this is accomplished by introducing a measure, the geometric algebra anti-correlator (GAAC), of the self-orthogonalization of the commutant of A induced by the dynamics. This approach extends and unifies averaged bipartite OTOC, operator entanglement, coherence generating power and Loschmidt echo. Each of these concepts is indeed recovered by a special choice of A . We compute typical values of GAAC for random unitaries, we prove upper bounds and characterize their saturation. For generic energy spectrum we find explicit expressions for the infinite-time average of the GAAC which encode the relation between A and the full system of Hamiltonian eigenstates. Finally, a notion of A -chaoticity is suggested. 
    more » « less
  4. Abstract The dynamic conformations of a thin peptide film covalently‐linked to the surface of a transparent electrode are characterized over the course of a perturbation to their local pH by a photoacid under a controlled electrostatic potential. The local environment at this functionalized electrified interface is probed by the ultrafast fluorescence intensity and transient anisotropy of chromophores sparsely attached to the peptide side chains. A partition of chromophores into two sub‐populations is observed, one buried in the peptide layer and another that is solvent exposed, and their relative contributions to the observed fluorescence signal are affected by both pH and voltage stimuli. The photophysical properties of solvent‐exposed chromophores reveal that while the average conformation of the peptide mat is dictated by the pH of the surrounding electrolyte, their fluctuations are largely determined by the local electrostatic conditions set by the electrode's surface potential. 
    more » « less
  5. In the future, monsoon rainfall over densely populated South Asia is expected to increase, even as monsoon circulation weakens1,2,3. By contrast, past warm intervals were marked by both increased rainfall and a strengthening of monsoon circulation4,5,6, posing a challenge to understanding the response of the South Asian summer monsoon to warming. Here we show consistent South Asian summer monsoon changes in the mid-Pliocene, Last Interglacial, mid-Holocene and future scenarios, characterized by an overall increase in monsoon rainfall, a weakening of the monsoon trough-like circulation over the Bay of Bengal and a strengthening of the monsoon circulation over the northern Arabian Sea, as revealed by a compilation of proxy records and climate simulations. Increased monsoon rainfall is thermodynamically dominated by atmospheric moisture following the rich-get-richer paradigm, and dynamically dominated by the monsoon circulation driven by the enhanced land warming in subtropical western Eurasia and northern Africa. The coherent response of monsoon dynamics across warm climates reconciles past strengthening with future weakening, reinforcing confidence in future projections. Further prediction of South Asian summer monsoon circulation and rainfall by physics-based regression models using past information agrees well with climate model projections, with spatial correlation coefficients of approximately 0.8 and 0.7 under the high-emissions scenario. These findings underscore the promising potential of past analogues, bolstered by palaeoclimate reconstruction, in improving future South Asian summer monsoon projections. 
    more » « less