skip to main content


Title: Electrochemical Oxidation of Aliphatic Carboxylates: Kinetics, Thermodynamics, Mechanism, and the Role of Hydrogen Bonding
Abstract

The oxidation of tetra‐n‐butylammonium acetate, propionate, and pivalate was studied in rigorously anhydrous acetonitrile by conventional linear sweep and convolution voltammetry (LSV and ConV, respectively). The results suggest oxidation occurs via a concerted dissociative electron transfer pathway (RCO2→R⋅+CO2+e). The addition of water lowers the intrinsic barrier, signaling a possible change in mechanism to stepwise dissociative electron transfer. In rigorously dry acetonitrile, the oxidation potentials of CH3CO2(0.60±0.09), CH3CH2CO2, (0.47±0.05) and (CH3)3CCO2(0.40±0.04 V vs. Ag/AgNO3(CH3CN, 0.1 M)) are reported. These values parallel the stabilities of the resulting free radicals, consistent with a possible concerted pathway, although differential solvation of the carboxylate anions cannot be completely excluded as a contributor to this trend.

 
more » « less
NSF-PAR ID:
10493238
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
ChemElectroChem
ISSN:
2196-0216
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Biological N2reduction occurs at sulfur‐rich multiiron sites, and an interesting potential pathway is concerted double reduction/ protonation of bridging N2through PCET. Here, we test the feasibility of using synthetic sulfur‐supported diiron complexes to mimic this pathway. Oxidative proton transfer from μ‐η1 : η1‐diazene (HN=NH) is the microscopic reverse of the proposed N2fixation pathway, revealing the energetics of the process. Previously, Sellmann assigned the purple metastable product from two‐electron oxidation of [{Fe2+(PPr3)L1}2(μ‐η1 : η1‐N2H2)] (L1=tetradentate SSSS ligand) at −78 °C as [{Fe2+(PPr3)L1}2(μ‐η1 : η1‐N2)]2+, which would come from double PCET from diazene to sulfur atoms of the supporting ligands. Using resonance Raman, Mössbauer, NMR, and EPR spectroscopies in conjunction with DFT calculations, we show that the product is not an N2complex. Instead, the data are most consistent with the spectroscopically observed species being the mononuclear iron(III) diazene complex [{Fe(PPr3)L1}(η2‐N2H2)]+. Calculations indicate that the proposed double PCET has a barrier that is too high for proton transfer at the reaction temperature. Also, PCET from the bridging diazene is highly exergonic as a result of the high Fe3+/2+redox potential, indicating that the reverse N2protonation would be too endergonic to proceed. This system establishes the “ground rules” for designing reversible N2/N2H2interconversion through PCET, such as tuning the redox potentials of the metal sites.

     
    more » « less
  2. Abstract

    Catalysis ofO‐atom transfer (OAT) reactions is a characteristic of both natural (enzymatic) and synthetic molybdenum‐oxo and ‐peroxo complexes. These reactions can employ a variety of terminal oxidants, e. g. DMSO,N‐oxides, and peroxides, etc., but rarely molecular oxygen. Here we demonstrate the ability of a set of Schiff‐base‐MoO2complexes (cy‐salen)MoO2(cy‐salen=N,N’‐cyclohexyl‐1,2‐bis‐salicylimine) to catalyze the aerobic oxidation of PPh3. We also report the results of a DFT computational investigation of the catalytic pathway, including the identification of energetically accessible intermediates and transition states, for the aerobic oxidation of PMe3. Starting from the dioxo species, (cy‐salen)Mo(VI)O2(1), key reaction steps include: 1) associative addition of PMe3to an oxo‐O to give LMo(IV)(O)(OPMe3) (2); 2) OPMe3dissociation from2to produce mono‐oxo complex (cy‐salen)Mo(IV)O (3); 3) stepwise O2association with3via superoxo species (cy‐salen)Mo(V)(O)(η1‐O2) (4) to form the oxo‐peroxo intermediate (cy‐salen)Mo(VI)(O)(η2‐O2) (5); 4) theO‐transfer reaction of PMe3with oxo‐peroxo species5at the oxo‐group, rather than the peroxo unit leading, after OPMe3dissociation, to a monoperoxo species, (cy‐salen)Mo(IV)(η2‐O2) (7); and 5) regeneration of the dioxo complex (cy‐salen)Mo(VI)O2(1) from the monoperoxo triplet37or singlet17by a concerted, asynchronous electronic isomerization. An alternative pathway for recycling of the oxo‐peroxo species5to the dioxo‐Mo1via a bimetallic peroxo complex LMo(O)‐O−O‐Mo(O)L8is determined to be energetically viable, but is unlikely to be competitive with the primary pathway for aerobic phosphine oxidation catalyzed by1.

     
    more » « less
  3. Abstract

    A series of twelve second coordination sphere (SCS) functionalized manganese tricarbonyl bipyridyl complexes are investigated for their electrocatalytic CO2reduction properties in acetonitrile. A qualitative and quantitative assessment of the SCS functional groups is discussed with respect to the catalysts’ thermodynamic and kinetic efficiencies, and their product selectivities. In probing a broad scope of functional groups, it is clear that only the aprotic ortho‐arylester SCS is capable of promoting the highly desired low‐overpotential proton‐transfer electron‐transfer (PT‐ET) pathway for selective CO production. The ortho‐phenolic analogues cause an increase in overpotential with a product selectivity favoring H2evolution, consistent with a high‐overpotential pathway via the anionic [Mn−H]intermediate. Alternative aprotic Lewis base functional groups such as trifluoromethyl, morpholine and acetamide are shown to also be capable of intermediate manganese hydride generation. The tertiary amine substituent, 2‐morpholinophenyl, exhibits a desirable product distribution characteristic of syn‐gas (CO : H2=30 : 48) with an impressive turnover frequency, while the secondary amine group, 2‐acetamidophenyl, induces a notable shift in selectivity with a faradaic yield of 55 % for the formate (HCO2) product. In addition to their catalytic properties, cyclic voltammetry and infrared spectroelectrochemistry (IR‐SEC) studies are presented to probe pre‐catalyst electronic properties and the two‐electron reduction activation pathway.

     
    more » « less
  4. Abstract

    The electrochemical reduction of several α,β ‐epoxyketones was studied using cyclic (linear sweep) voltammetry, convolution voltammetry, and homogeneous redox catalysis. The results were reconciled to pertinent theories of electron transfer. α,β ‐Epoxyketones undergo dissociative electron‐transfer reactions with C−O bond cleavage, via both stepwise and concerted mechanisms, depending on their structure. For aliphatic ketones, the preferred mechanism of reduction is consistent with the “sticky” concerted model for dissociative electron transfer. Bond cleavage occurs simultaneously with electron transfer, and there is a residual, electrostatic interaction in the ring‐opened (distonic) radical anion. In contrast, for aromatic ketones, because the ring‐closed radical anions are resonance‐stabilized and exist at energy minima, a stepwise mechanism operates (electron transfer and bond cleavage occur in discrete steps). The rate constants for ring opening are on the order of 108 s−1, and not significantly affected by substituents on the 3‐membered ring (consistent with C−O bond cleavage). These results and conclusions were fully supported and augmented by molecular orbital calculations.

     
    more » « less
  5. Abstract

    Hyperpolarization of N‐heterocycles with signal amplification by reversible exchange (SABRE) induces NMR sensitivity gains for biological molecules. Substitutions with functional groups, in particular in theortho‐position of the heterocycle, however, result in low polarization using a typical Ir catalyst with a bis‐mesityl N‐heterocyclic carbene ligand for SABRE, presumably due to steric hindrance. With the addition of allylamine or acetonitrile as coligands to the precatalyst chloro(1,5‐cyclooctadiene)[4,5‐dimethyl‐1,3‐bis(2,4,6‐trimethylphenyl)imidazol‐2‐ylidene] iridium, the1H signal enhancement increased in several substrates withorthoNH2substitutions. For example, for a proton in 2,4‐diaminopyrimidine, the enhancement factors increased from −7±1 to −210±20 with allylamine or to −160±10 with acetonitrile. CH3substituted molecules yielded maximum signal enhancements of −25±7 with acetonitrile addition, which is considerably less than the corresponding NH2substituted molecules, despite exhibiting similar steric size. With the more electron‐donating NH2substitution resulting in greater enhancement, it is concluded that steric hindrance is not the only dominant factor in determining the polarizability of the CH3substituted compounds. The addition of allylamine increased the signal enhancement for the 290 Da trimethoprim, a molecule with a 2,4‐diaminopyrimidine moiety serving as an antibacterial agent, to −70.

     
    more » « less