skip to main content


Title: Ethics in Artificial Intelligence Education: Preparing Students to Become Responsible Consumers and Developers of AI.
The rapid expansion of Artificial Intelligence (AI) necessitates a need for educating students to become knowledgeable of AI and aware of its interrelated technical, social, and human implications. The latter (ethics) is particularly important to K-12 students because they may have been interacting with AI through everyday technology without realizing it. They may be targeted by AI generated fake content on social media and may have been victims of algorithm bias in AI applications of facial recognition and predictive policing. To empower students to recognize ethics related issues of AI, this paper reports the design and implementation of a suite of ethics activities embedded in the Developing AI Literacy (DAILy) curriculum. These activities engage students in investigating bias of existing technologies, experimenting with ways to mitigate potential bias, and redesigning the YouTube recommendation system in order to understand different aspects of AI-related ethics issues. Our observations of implementing these lessons among adolescents and exit interviews show that students were highly engaged and became aware of potential harms and consequences of AI tools in everyday life after these ethics lessons.  more » « less
Award ID(s):
2048746
NSF-PAR ID:
10493259
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Proceedings of the 2023 ASEE Annual Conference & Exposition.
Date Published:
Journal Name:
Proceedings of the 2023 ASEE Annual Conference & Exposition.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As social justice issues facing our nation continue to be placed in the foreground of everyday life, it is important to understand how undergraduate civil engineering students perceive and understand relations between social justice and our infrastructure systems. Additionally, as more civil engineering undergraduate programs increase the emphasis on ethics and equity issues in their curricula, we must also seek to understand students’ awareness of their influence, as civil engineering professionals, to improve infrastructure systems that contribute to injustice and inequity. This paper presents findings from a pilot study conducted as part of an NSF-funded grant implementing cultural and curricular changes in a medium-sized civil engineering department in the southeast. Drawing on frameworks that examine how individuals critically understand systems of oppression, and the justification used to explain these systems this work examined student perceptions of inequities in societal infrastructure systems. The present study was guided by the following research questions: (1) Are undergraduate civil engineering students critically aware of inequities in society’s infrastructure systems? (2) To what degree are undergraduate civil engineering students comfortable challenging the status quo? (3) Is there an association between students’ critical awareness of inequitable infrastructure systems and their agency to promote systemic change as civil engineering professionals? Study data included survey responses to validated scales measuring: critical consciousness, system justification beliefs, social empathy, and sociopolitical control beliefs. New instrumentation was also piloted assessing equity-related perceptions and beliefs about civil engineering and infrastructure systems. Participants were junior and senior undergraduate civil engineering students (n = 21) enrolled in a professional development, community, and strategic change course, with data collected throughout the Fall 2020 semester. Results suggest that students did have awareness of infrastructure inequities and, on average, did not have strong system justification beliefs. However, there was not an association between students’ awareness of inequities and their agency beliefs about promoting systemic change as civil engineers. After presenting study results, we discuss implications of study results and propose directions for future research. 
    more » « less
  2. Artificial Intelligence (AI) and cybersecurity are becoming increasingly intertwined, with AI and Machine Learning (AI/ML) being leveraged for cybersecurity, and cybersecurity helping address issues caused by AI. The goal in our exploratory curricular initiative is to dovetail the need to teach these two critical, emerging topics in highschool, and create a suite of novel activities, 'AI & Cybersecurity for Teens' (ACT) that introduces AI/ML in the context of cybersecurity and prepares high school teachers to integrate them in their cybersecurity curricula. Additionally, ACT activities are designed such that teachers (and students) build a deeper understanding of how ML works and how the machine actually "learns". Such understanding will aid more meaningful interrogation of critical issues such as AI ethics and bias. ACT introduces core ML topics contextualized in cybersecurity topics through a range of programming activities and pre-programmed games in NetsBlox, an easy-to-use block-based programming environment. We conducted 2 pilot workshops with 12 high school cybersecurity teachers focused on ACT activities. Teachers' feedback was positive and encouraging but also highlighted potential challenges in implementing ACT in the classroom. This paper reports on our approach and activities design, and teachers' experiences and feedback on integrating AI into high school cybersecurity curricula. 
    more » « less
  3. null (Ed.)
    Ethics and social responsibility have frequently been identified as important areas of practice for professional engineers. Thus, measuring engineering ethics and social responsibility is critical to assessing the abilities of engineering students, understanding how those abilities change over time, and exploring the impacts of certain ethical interventions, such as coursework or participation in extracurricular activities. However, measurement of these constructs is difficult, as they are complex and multi-faceted. Much prior research has been carried out to develop and assess ethical interventions in engineering education, but the findings have been mixed, in part because of these measurement challenges. To address this variation in prior work, we have designed and carried out a five year, longitudinal, mixed-methods study to explore students’ perceptions of ethics and social responsibility. This study relies on both repeated use of quantitative measures related to ethics and repeated qualitative interviews to explore how students’ perceptions of these issues change across time, between institutions, and in response to participation in certain experiences. This paper focuses on the thematic analysis and preliminary results of the 33 pairs of interviews that were gathered from participants at three different universities in Year 1 and Year 4 of their undergraduate studies. Given the multifaceted and complex nature of ethics, measuring and assessing how students’ perceive its various aspects (e.g. those related to ethical climate, moral awareness, moral disengagement etc.) has proven challenging. Furthermore, investigating how students’ perceptions of these concepts vary over time adds another layer of complexity for analyzing our longitudinal data. For example, a student might show increased understanding in one aspect of ethics over time and consistency in another, making it difficult to identify patterns or the impacts of specific influences. Due to this large variation in student experiences and perspectives, we used single case analysis to analyze the longitudinal interviews of a single participant, Corvin. From this analysis, three themes emerged in the student's responses: a shift in his views of engineering ethics and social responsibility from idealism to pragmatism; an adjustment in how he thinks engineers should balance their responsibilities to the public and to their employers; and the characteristics he identifies for ethical engineers. This paper will be beneficial for engineering educators and researchers who are interested in measuring and developing ethical capabilities among engineering students. 
    more » « less
  4. Ethics and social responsibility are often viewed as key areas of concern for many engineering educators and professional engineers. Thus, it is important to consider how students and professionals understand and navigate ethical issues, explore how such perceptions and abilities change over time, and investigate if certain types of interventions and experiences (e.g., coursework, training, service activities, etc.) impact individual participants. The breadth of engineering as a profession also raises questions about how ethics and social responsibility are understood across a wide range of disciplines, subfields, and industry sectors. Recognizing a need for more empirical research to address such questions, our research team carried out a five year, longitudinal, mixed-methods study to explore students’ perceptions of ethics and social responsibility. This study relied on repeated use of quantitative measures related to ethics, along with qualitative interviews to explore how students’ perceptions of these issues change across time, between institutions, and in response to participation in certain experiences. Additionally, we are now initiating a follow-on study where we will collect survey and interview data from our previous participants now that most of them are in full-time job roles and/or pursuing graduate degrees, as well as from a new group of early career engineers to enlarge our sample. In this paper, we first give an overview of key research findings from our ongoing research that have been published or are under review. The second major part of this paper delves into some specific theoretical and methodological questions and challenges associated with our research. This paper will likely be of interest to educators and researchers who are involved with developing and/or evaluating ethical capabilities among engineering students. 
    more » « less
  5. Frank, B. ; Jones, D. ; Ryan, Q. (Ed.)
    In this study, we showcase the various ways high school physics teachers make connections between science content and social justice, pushing the boundary of what is counted as science content by bringing social justice engagement to the center of science learning. We analyze lessons submitted by eighteen high school physics teachers who participated in a professional development program that supported the integration of equity into their science teaching. Three themes represent teachers' approach toward integrating social justice in their science lessons: (1) investigating the nature of science in specific science concepts and re-evaluating/redefining science concepts, (2) connecting students' everyday activities with science and global social justice issues, and (3) using science knowledge to engage with and advocate for social justice issues in students' local communities. 
    more » « less