Abstract The Milky Way Bulge extra-tidal star survey is a spectroscopic survey with the goal of identifying stripped globular cluster stars from inner Galaxy clusters. In this way, an indication of the fraction of metal-poor bulge stars that originated from globular clusters can be determined. We observed and analyzed stars in and around BH 261, an understudied globular cluster in the bulge. From seven giants within the tidal radius of the cluster, we measured an average heliocentric radial velocity of 〈RV〉 = −61 ± 2.6 km s−1with a radial velocity dispersion of 〈σ〉 = 6.1 ± 1.9 km s−1. The large velocity dispersion may have arisen from tidal heating in the cluster’s orbit about the Galactic center, or because BH 261 has a high dynamical mass as well as a high mass-to-light ratio. From spectra of five giants, we measure an average metallicity of 〈[Fe/H]〉 = −1.1 ± 0.2 dex. We also spectroscopically confirm an RR Lyrae star in BH 261, which yields a distance to the cluster of 7.1 ± 0.4 kpc. Stars with 3D velocities and metallicities consistent with BH 261 reaching to ∼0.°5 from the cluster are identified. A handful of these stars are also consistent with the spatial distribution of potential debris from models focusing on the most recent disruption of the cluster.
more »
« less
RR Lyrae Stars Belonging to the Candidate Globular Cluster Patchick 99
Abstract Patchick 99 is a candidate globular cluster located in the direction of the Galactic bulge, with a proper motion almost identical to the field and extreme field star contamination. A recent analysis suggests it is a low-luminosity globular cluster with a population of RR Lyrae stars. We present new spectra of stars in and around Patchick 99, targeting specifically the three RR Lyrae stars associated with the cluster as well as the other RR Lyrae stars in the field. A sample of 53 giant stars selected from proper motions and a position on the color–magnitude diagram are also observed. The three RR Lyrae stars associated with the cluster have similar radial velocities and distances, and two of the targeted giants also have radial velocities in this velocity regime and [Fe/H] metallicities that are slightly more metal-poor than the field. Therefore, if Patchick 99 is a bona fide globular cluster, it would have a radial velocity of −92 ± 10 km s−1, a distance of 6.7 ± 0.4 kpc (as determined from the RR Lyrae stars), and an orbit that confines it to the inner bulge.
more »
« less
- Award ID(s):
- 2009836
- PAR ID:
- 10493270
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 963
- Issue:
- 1
- ISSN:
- 2041-8205
- Format(s):
- Medium: X Size: Article No. L33
- Size(s):
- Article No. L33
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
RR Lyrae stars are recognized as some of the oldest stars in the Universe. In addition, they are some of the few old celestial objects for which distances can be reliably inferred. As such, these stars are excellent tracers of the oldest structures that exist in the inner Galaxy. Although the inner Galaxy is where the oldest structures in the Milky Way are thought to be hidden, it is also a region notoriously difficult to study due to high extinction and crowding. Here, I will summarize how RR Lyrae stars have been used to obtain a more complete picture of the inner Galaxy. In particular, recently, a large sample of RR Lyrae star motions through space have been obtained and compared to younger, more metal-rich stars in the bulge/bar. It is seen that the inner Galaxy RR Lyrae star kinematics are complicated by a mix of a variety of Galactic components. After isolating only those RR Lyrae stars that are confined to the bulge, a subsample of these stars have slower rotation and are less barred than the dominant bar/bulge. Curiously, there is no discernible metallicity [Fe/H] difference between these two subsamples. Old, metal-poor stars in the inner Galaxy need to be properly accounted for when discussing processes that gave rise to the formation of the inner Galaxy and the Galactic bar/bulge.more » « less
-
ABSTRACT RR Lyrae stars have long been popular standard candles, but significant advances in methodology and technology have been made in recent years to increase their precision as distance indicators. We present multiwavelength (optical UBVRcIc and Gaia G, BP, RP; near-infrared JHKs; mid-infrared [3.6], [4.5]) period–luminosity–metallicity (PLZ), period–Wesenheit–metallicity (PWZ) relations, calibrated using photometry obtained from the Carnegie RR Lyrae Program and parallaxes from the Gaia second data release for 55 Galactic field RR Lyrae stars. The metallicity slope, which has long been predicted by theoretical relations, can now be measured in all passbands. The scatter in the PLZ relations is on the order of 0.2 mag, and is still dominated by uncertainties in the parallaxes. As a consistency check of our PLZ relations, we also measure the distance modulus to the globular cluster M4, the Large Magellanic Cloud and the Small Magellanic Cloud, and our results are in excellent agreement with estimates from previous studies.more » « less
-
Abstract We used high-resolution spectra acquired with the Magellan Telescope to measure radial and rotational velocities of approximately 200 stars in the Galactic globular cluster NGC 3201. The surveyed sample includes blue straggler stars (BSSs) and reference stars in different evolutionary stages (main-sequence turnoff, subgiant, red giant, and asymptotic giant branches). The average radial velocity value (〈Vr〉 = 494.5 ± 0.5 km s−1) confirms a large systemic velocity for this cluster and was used to distinguish 33 residual field interlopers. The final sample of member stars has 67 BSSs and 114 reference stars. Similarly to what is found in other clusters, the totality of the reference stars has negligible rotation (< 20 km s−1), while the BSS rotational velocity distribution shows a long tail extending up to ∼200 km s−1, with 19 BSSs (out of 67) spinning faster than 40 km s−1. This sets the percentage of fast-rotating BSSs to ∼28%. Such a percentage is roughly comparable to that measured in other loose systems (ωCentauri, M4, and M55) and significantly larger than that measured in high-density clusters (as 47 Tucanae, NGC 6397, NGC 6752, and M30). This evidence supports a scenario where recent BSS formation (mainly from the evolution of binary systems) is occurring in low-density environments. We also find that the BSS rotational velocity tends to decrease for decreasing luminosity and surface temperature, similarly to what is observed in main-sequence stars. Hence, further investigations are needed to understand the impact of BSS internal structure on the observed rotational velocities.more » « less
-
null (Ed.)We present a chemo-dynamical study of the Orphan stellar stream using a catalog of RR Lyrae pulsating variable stars for which photometric, astrometric, and spectroscopic data are available. Employing low-resolution spectra from the Sloan Digital Sky Survey (SDSS), we determined line-of-sight velocities for individual exposures and derived the systemic velocities of the RR Lyrae stars. In combination with the stars’ spectroscopic metallicities and Gaia EDR3 astrometry, we investigated the northern part of the Orphan stream. In our probabilistic approach, we found 20 single mode RR Lyrae variables likely associated with the Orphan stream based on their positions, proper motions, and distances. The acquired sample permitted us to expand our search to nonvariable stars in the SDSS dataset, utilizing line-of-sight velocities determined by the SDSS. We found 54 additional nonvariable stars linked to the Orphan stream. The metallicity distribution for the identified red giant branch stars and blue horizontal branch stars is, on average, −2.13 ± 0.05 dex and −1.87 ± 0.14 dex, with dispersions of 0.23 and 0.43 dex, respectively. The metallicity distribution of the RR Lyrae variables peaks at −1.80 ± 0.06 dex and a dispersion of 0.25 dex. Using the collected stellar sample, we investigated a possible link between the ultra-faint dwarf galaxy Grus II and the Orphan stream. Based on their kinematics, we found that both the stream RR Lyrae and Grus II are on a prograde orbit with similar orbital properties, although the large uncertainties on the dynamical properties render an unambiguous claim of connection difficult. At the same time, the chemical analysis strongly weakens the connection between both. We argue that Grus II in combination with the Orphan stream would have to exhibit a strong inverse metallicity gradient, which to date has not been detected in any Local Group system.more » « less