skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: An Unexpected Decline in Spring Atmospheric Humidity in the Interior Southwestern United States and Implications for Forest Fires
Abstract On seasonal time scales, vapor pressure deficit (VPD) is a known predictor of burned area in the southwestern United States (“the Southwest”). VPD increases with atmospheric warming due to the exponential relationship between temperature and saturation vapor pressure. Another control on VPD is specific humidity, such that increases in specific humidity can counteract temperature-driven increases in VPD. Unexpectedly, despite the increased capacity of a warmer atmosphere to hold water vapor, near-surface specific humidity decreased from 1970 to 2019 in much of the Southwest, particularly in spring, summer, and fall. Here, we identify declining near-surface humidity from 1970 to 2019 in the southwestern United States with both reanalysis and in situ station data. Focusing on the interior Southwest in the months preceding the summer forest fire season, we explain the decline in terms of changes in atmospheric circulation and moisture fluxes between the surface and the atmosphere. We find that an early spring decline in precipitation in the interior region induced a decline in soil moisture and evapotranspiration, drying the lower troposphere in summer. This prior season precipitation decline is in turn related to a trend toward a Northern Hemisphere stationary wave pattern. Finally, using fixed humidity scenarios and the observed exponential relationship between VPD and burned forest area, we estimate that with no increase in temperature at all, the humidity decline alone would still lead to nearly one-quarter of the observed VPD-induced increase in burned area over 1984–2019. Significance StatementBurned forest area has increased significantly in the southwestern United States in recent decades, driven in part by an increase in atmospheric aridity [vapor pressure deficit (VPD)]. Increases in VPD can be caused by a combination of increasing temperature and decreasing specific humidity. As the atmosphere warms with climate change, its capacity to hold moisture increases. Despite this, there is a decrease in near-surface air humidity in the interior southwestern United States over 1970–2019, which during the summer is likely caused by a decline in early spring precipitation leading to limited soil moisture and evaporation in spring and summer. We estimate that this declining humidity alone, without an increase in temperature, would cause about one-quarter of the VPD-induced increase in burned forest area in this region over 1984–2019.  more » « less
Award ID(s):
2127684 1939988
PAR ID:
10493298
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Hydrometeorology
Volume:
25
Issue:
3
ISSN:
1525-755X
Format(s):
Medium: X Size: p. 373-390
Size(s):
p. 373-390
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent record-breaking wildfire seasons in California prompt an investigation into the climate patterns that typically precede anomalous summer burned forest area. Using burned-area data from the U.S. Forest Service’s Monitoring Trends in Burn Severity (MTBS) product and climate data from the fifth major global reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ERA5) over 1984–2018, relationships between the interannual variability of antecedent climate anomalies and July California burned area are spatially and temporally characterized. Lag correlations show that antecedent high vapor pressure deficit (VPD), high temperatures, frequent extreme high temperature days, low precipitation, high subsidence, high geopotential height, low soil moisture, and low snowpack and snowmelt anomalies all correlate significantly with July California burned area as far back as the January before the fire season. Seasonal regression maps indicate that a global midlatitude atmospheric wave train in late winter is associated with anomalous July California burned area. July 2018, a year with especially high burned area, was to some extent consistent with the general patterns revealed by the regressions: low winter precipitation and high spring VPD preceded the extreme burned area. However, geopotential height anomaly patterns were distinct from those in the regressions. Extreme July heat likely contributed to the extent of the fires ignited that month, even though extreme July temperatures do not historically significantly correlate with July burned area. While the 2018 antecedent climate conditions were typical of a high-burned-area year, they were not extreme, demonstrating the likely limits of statistical prediction of extreme fire seasons and the need for individual case studies of extreme years. Significance Statement The purpose of this study is to identify the local and global climate patterns in the preceding seasons that influence how the burned summer forest area in California varies year-to-year. We find that a dry atmosphere, high temperatures, dry soils, less snowpack, low precipitation, subsiding air, and high pressure centered west of California all correlate significantly with large summer burned area as far back as the preceding January. These climate anomalies occur as part of a hemispheric scale pattern with weak connections to the tropical Pacific Ocean. We also describe the climate anomalies preceding the extreme and record-breaking burned-area year of 2018, and how these compared with the more general patterns found. These results give important insight into how well and how early it might be possible to predict the severity of an upcoming summer wildfire season in California. 
    more » « less
  2. Abstract Southwest North America is projected by models to aridify, defined as declining summer soil moisture, under the influence of rising greenhouse gases. Here, we investigate the driving mechanisms of aridification that connect the oceans, atmosphere, and land surface across seasons. The analysis is based on atmosphere model simulations forced by imposed sea surface temperatures (SSTs). For the historical period, these are the observed ones, and the model is run to 2041 using SSTs that account for realistic and plausible evolutions of Pacific Ocean and Atlantic Ocean interannual to decadal variability imposed on estimates of radiatively forced SST change. The results emphasize the importance of changes in precipitation throughout the year for declines in summer soil moisture. In the worst-case scenario, a cool tropical Pacific and warm North Atlantic lead to reduced cool season precipitation and soil moisture. Drier soils then persist into summer such that evapotranspiration reduces and soil moisture partially recovers. In the best-case scenario, the opposite states of the oceans lead to increased cool season precipitation but higher evapotranspiration prevents this from increasing summer soil moisture. Across the scenarios, atmospheric humidity is primarily controlled by soil moisture: drier soils lead to reduced evapotranspiration, lower air humidity, and higher vapor pressure deficit (VPD). Radiatively forced change reduces fall precipitation via anomalous transient eddy moisture flux divergence. Fall drying causes soils to enter winter dry such that, even in the best-case scenario of cool season precipitation increase, soil moisture remains dry. Radiative forcing reduces summer precipitation aided by reduced evapotranspiration from drier soils. Significance StatementSouthwest North America has long been projected to undergo aridification under rising greenhouse gases. In this model-based paper, we examine how coupling across seasons between the atmosphere and land system moves the region toward reduced summer soil moisture. The results show the dominant control on summer soil moisture by precipitation throughout the year. It also shows that even in best-case scenarios when changes in decadal modes of ocean variability lead to increases in cool season precipitation, rising spring and summer evapotranspiration means this does not translate into increased summer soil moisture. The work places projections of regional aridification on a firmer basis of understanding of the ocean driving of the atmosphere and its coupling to the land system. 
    more » « less
  3. Abstract. The annual area burned due to wildfires in the western United States (WUS) increased bymore than 300 % between 1984 and 2020. However, accounting for the nonlinear, spatially heterogeneous interactions between climate, vegetation, and human predictors driving the trends in fire frequency and sizes at different spatial scales remains a challenging problem for statistical fire models. Here we introduce a novel stochastic machine learning (SML) framework, SMLFire1.0, to model observed fire frequencies and sizes in 12 km × 12 km grid cells across the WUS. This framework is implemented using mixture density networks trained on a wide suite of input predictors. The modeled WUS fire frequency matches observations at both monthly (r=0.94) and annual (r=0.85) timescales, as do the monthly (r=0.90) and annual (r=0.88) area burned. Moreover, the modeled annual time series of both fire variables exhibit strong correlations (r≥0.6) with observations in 16 out of 18 ecoregions. Our ML model captures the interannual variability and the distinct multidecade increases in annual area burned for both forested and non-forested ecoregions. Evaluating predictor importance with Shapley additive explanations, we find that fire-month vapor pressure deficit (VPD) is the dominant driver of fire frequencies and sizes across the WUS, followed by 1000 h dead fuel moisture (FM1000), total monthly precipitation (Prec), mean daily maximum temperature (Tmax), and fraction of grassland cover in a grid cell. Our findings serve as a promising use case of ML techniques for wildfire prediction in particular and extreme event modeling more broadly. They also highlight the power of ML-driven parameterizations for potential implementation in fire modules of dynamic global vegetation models (DGVMs) and earth system models (ESMs). 
    more » « less
  4. Abstract The US Southwest is in a drought crisis that has been developing over the past two decades, contributing to marked increases in burned forest areas and unprecedented efforts to reduce water consumption. Climate change has contributed to this ongoing decadal drought via warming that has increased evaporative demand and reduced snowpack and streamflows. However, on the supply side, precipitation has been low during the 21st century. Here, using simulations with an atmosphere model forced by imposed sea surface temperatures, we show that the 21st century shift to cooler tropical Pacific sea surface temperatures forced a decline in cool season precipitation that in turn drove a decline in spring to summer soil moisture in the southwest. We then project the near-term future out to 2040, accounting for plausible and realistic natural decadal variability of the Pacific and Atlantic Oceans and radiatively-forced change. The future evolution of decadal variability in the Pacific and Atlantic will strongly influence how wet or dry the southwest is in coming decades as a result of the influence on cool season precipitation. The worst-case scenario involves a continued cold state of the tropical Pacific and the development of a warm state of the Atlantic while the best case scenario would be a transition to a warm state of the tropical Pacific and the development of a cold state of the Atlantic. Radiatively-forced cool season precipitation reduction is strongest if future forced SST change continues the observed pattern of no warming in the equatorial Pacific cold tongue. Although this is a weaker influence on summer soil moisture than natural decadal variability, no combination of natural decadal variability and forced change ensures a return to winter precipitation or summer soil moisture levels as high as those in the final two decades of the 20th century. 
    more » « less
  5. Compound drought‐heatwave (CDHW) events threaten ecosystem productivity and are often characterized by low soil moisture (SM) and high vapor pressure deficit (VPD). However, the relative roles of SM and VPD in constraining forest productivity during CDHWs remain controversial. In the summer of 2022, China experienced a record‐breaking CDHW event (DH2022). Here, we applied satellite remote‐sensing data and meteorological data, and machine‐learning techniques to quantify the individual contributions of SM and VPD to forest productivity variations and investigate their interactions during the development of DH2022. The results reveal that SM, rather than VPD, dominates the forest productivity decline during DH2022. We identified a possible critical tipping point of SM below which forest productivity would quickly decline with the decreasing SM. Furthermore, we illuminated the evolution of SM, VPD, evapotranspiration, forest productivity, and their interactions throughout DH2022. Our findings broaden the understanding of forest response to extreme CDHWs at the ecosystem scale. 
    more » « less