skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Restoring spatiotemporal variability to enhance the capacity for dispersal‐limited species to track climate change
Abstract

Climate refugia are areas where species can persist through climate change with little to no movement. Among the factors associated with climate refugia are high spatial heterogeneity, such that there is only a short distance between current and future optimal climates, as well as biotic or abiotic environmental factors that buffer against variability in time. However, these types of climate refugia may be declining due to anthropogenic homogenization of environments and degradation of environmental buffers. To quantify the potential for restoration of refugia‐like environmental conditions to increase population persistence under climate change, we simulated a population's capacity to track their temperature over space and time given different levels of spatial and temporal variability in temperature. To determine how species traits affected the efficacy of restoring heterogeneity, we explored an array of values for species' dispersal ability, thermal tolerance, and fecundity. We found that species were more likely to persist in environments with higher spatial heterogeneity and lower environmental stochasticity. When simulating a management action that increased the spatial heterogeneity of a previously homogenized environment, species were more likely to persist through climate change, and population sizes were generally higher, but there was little effect with mild temperature change. The benefits of heterogeneity restoration were greatest for species with limited dispersal ability. In contrast, species with longer dispersal but lower fecundity were more likely to benefit from a reduction in environmental stochasticity than an increase in spatial heterogeneity. Our results suggest that restoring environments to refugia‐like conditions could promote species' persistence under the influence of climate change in addition to conservation strategies such as assisted migration, corridors, and increased protection.

 
more » « less
NSF-PAR ID:
10493485
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
105
Issue:
4
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Climate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a major limitation now or under future climates,hydrologic microrefugiaare likely to prove essential for species persistence, particularly for sessile species and plants. Zones of high relative water availability – mesic microenvironments – are generated by a wide array of hydrologic processes, and may be loosely coupled to climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic microenvironments will act as species‐specific refugia only if the nature and space/time variability in water availability are compatible with the ecological requirements of a target species. We illustrate this argument with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic refugia could form a cornerstone of climate‐cognizant conservation strategies, but that this would require improved understanding of climate change effects on key hydrologic processes, including frequently cryptic processes such as groundwater flow.

     
    more » « less
  2. Many species are shifting their ranges to keep pace with climate change, but habitat fragmentation and limited dispersal could impede these range shifts. In the case of climate-vulnerable foundation species such as tropical reef corals and temperate forest trees, such limitations might put entire communities at risk of extinction. Restoring connectivity through corridors, stepping-stones or enhanced quality of existing patches could prevent the extinction of several species, but dispersal-limited species might not benefit if other species block their dispersal. Alternatively, managers might relocate vulnerable species between habitats through assisted migration, but this is generally a species-by-species approach. To evaluate the relative efficacy of these strategies, we simulated the climate-tracking of species in randomized competitive metacommunities with alternative management interventions. We found that corridors and assisted migration were the most effective strategies at reducing extinction. Assisted migration was especially effective at reducing the extinction likelihood for short-dispersing species, but it often required moving several species repeatedly. Assisted migration was more effective at reducing extinction in environments with higher stochasticity, and corridors were more effective at reducing extinction in environments with lower stochasticity. We discuss the application of these approaches to an array of systems ranging from tropical corals to temperate forests. This article is part of the theme issue ‘Ecological complexity and the biosphere: the next 30 years’. 
    more » « less
  3. Successful reproduction is critical to the growth and persistence of marine fish populations, yet how changes in the environment influence reproduction remains largely unknown. We explored how shifting ocean conditions influenced larval production in four species of long-lived, live-bearing rockfish (Sebastes spp.) in the California Current. Brood fecundity, body size, and environmental information were analyzed from the mid-1980s through 2020. Interannual variation in brood fecundity was greater than 50% in the single-brooding yellowtail rockfish (S. flavidus) and widow rockfish (S. entomelas). Brood fecundity varied less in chilipepper (S. goodei) and bocaccio (S. paucispinis), two species capable of multiple broods per year. In these two species, interannual fecundity variability is more likely to depend on the number of broods produced than on brood size alone. In all four species, brood fecundity was positively correlated with maternal length and body condition. Variable ocean conditions influenced the strength of maternal size effects by year. These results provide evidence for reproductive plasticity and environmental effects on fecundity, with implications for changes in population reproductive potential with climate change.

     
    more » « less
  4. null (Ed.)
    Climate refugia, where local populations of species can persist through periods of unfavorable regional climate, play a key role in the maintenance of regional biodiversity during times of environmental change. However, the ability of refugia to buffer biodiversity change may be mediated by the landscape context of refugial habitats. Here, we examined how plant communities restricted to refugial sky islands of alpine tundra in the Colorado Rockies are changing in response to rapid climate change in the region (increased temperature, declining snowpack, and earlier snow melt-out) and if these biodiversity changes are mediated by the area or geographic isolation of the sky island. We resampled plant communities in 153 plots at seven sky islands distributed across the Colorado Rockies at two time points separated by 12 years (2007/2008–2019/2020) and found changes in taxonomic, phylogenetic, and functional diversity over time. Specifically, we found an increase in species richness, a trend toward increased phylogenetic diversity, a shift toward leaf traits associated with the stress-tolerant end of leaf economics spectrum (e.g., lower specific leaf area, higher leaf dry matter content), and a decrease in the functional dispersion of specific leaf area. Importantly, these changes were partially mediated by refugial area but not by geographic isolation, suggesting that dispersal from nearby areas of tundra does not play a strong role in mediating these changes, while site characteristics associated with a larger area (e.g., environmental heterogeneity, larger community size) may be relatively more important. Taken together, these results suggest that considering the landscape context (area and geographic isolation) of refugia may be critical for prioritizing the conservation of specific refugial sites that provide the most conservation value. 
    more » « less
  5. Abstract

    As climate change advances, there is a need to examine climate conditions at scales that are ecologically relevant to species. While microclimates in forested systems have been extensively studied, microclimates in grasslands have received little attention despite the climate vulnerability of this endangered biome. We employed a novel combination of iButton temperature and humidity measurements, fine-scale spatial observations of vegetation and topography collected by unpiloted aircraft system, and gridded mesoclimate products to model microclimate anomalies in temperate grasslands. We found that grasslands harbored diverse microclimates and that primary productivity (as represented by normalized difference vegetation index), canopy height, and topography were strong spatial drivers of these anomalies. Microclimate heterogeneity is likely of ecological importance to grassland organisms seeking out climate change refugia, and thus there is a need to consider microclimate complexity in the management and conservation of grassland biodiversity.

     
    more » « less