ABSTRACT Recombinant adeno associated virus (rAAV) vectors have become popular delivery vehicles for in vivo gene therapies, but demand for rAAVs continues to outpace supply. Platform processes for rAAV production are being developed by many manufacturers, and transient chemical transfection of human embryonic kidney 293 (HEK293) cells is currently the most popular approach. However, the cutting edge nature of rAAV process development encourages manufacturers to keep cell culture media formulations, plasmid sequences, and other details proprietary, which creates hurdles for small companies and academic labs seeking to innovate in this space. To address this problem, we leveraged the resources of an academic‐industry consortium (Advanced Mammalian Biomanufacturing Innovation Center, AMBIC) to develop an rAAV production system based on transient transfection of suspension HEK293 cells adapted to an in‐house, chemically defined medium. We found that balancing iron and calcium levels in the medium were crucial for maintaining transfection efficiency and minimizing cell aggregation, respectively. A design of experiments approach was used to optimize the transient transfection process for batch rAAV production, and PEI:DNA ratio and cell density at transfection were the parameters with the strongest effects on vector genome (VG) titer. When the optimized transient process was transferred between two university sites, VG titers were within a twofold range. Analytical characterization showed that purified rAAV from the AMBIC process had comparable viral protein molecular weights versus vector derived from commercial processes, but differences in transducing unit (TU) titer were observed between vector preps. The developed media formulation, transient transfection process, and analytics for VG titer, capsid identity, and TU titer constitute a set of workflows that can be adopted by others to study fundamental problems that could improve product yield and quality in the nascent field of rAAV manufacturing.
more »
« less
Toward the quantification of adeno-associated virus titer by electrochemical impedance spectroscopy
Gene therapies have shown great promise for the potential treatment of a broad range of diseases. Adeno-associated viruses (AAVs) are popular gene vectors because of their ability to target specific tissues, and they have demonstrated high transduction efficiencies in multiple neurological targets. While these therapeutics hold great promise, their biomanufacturing has limited potential cost-reduction and more widespread adoption. Herein, we report the preliminary development of an immunosensor for measuring the titer of adeno-associated virus 2 (AAV2), which may be deployed for rapid quantification of product yield during AAV biomanufacturing. We functionalized an interdigitated electrode array with anti-AAV2 antibodies, and electrochemical impedance spectroscopy was employed to investigate the response to AAV2 titer. A Faradaic sensing principle was utilized, in which the charge transfer resistance (Rct) of an electrochemical reporter was monitored after capture of AAV2 on the surface of the sensor. A linear response was measured over titers 1012 - 1013 capsids/mL.
more »
« less
- Award ID(s):
- 1846911
- PAR ID:
- 10493598
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE BioSensors
- ISBN:
- 979-8-3503-4604-6
- Page Range / eLocation ID:
- 1 to 4
- Subject(s) / Keyword(s):
- biosensor virus AAV impedance spectroscopy
- Format(s):
- Medium: X
- Location:
- London, United Kingdom
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Adeno‐associated viruses (AAVs) have acquired a central role in modern medicine as delivery agents for gene therapies targeting rare diseases. While new AAVs with improved tissue targeting, potency, and safety are being introduced, their biomanufacturing technology is lagging. In particular, the AAV purification pipeline hinges on protein ligands for the affinity‐based capture step. While featuring excellent AAV binding capacity and selectivity, these ligands require strong acid (pH <3) elution conditions, which can compromise the product's activity and stability. Additionally, their high cost and limited lifetime has a significant impact on the price tag of AAV‐based therapies. Seeking to introduce a more robust and affordable affinity technology, this study introduces a cohort of peptide ligands that (i) mimic the biorecognition activity of the AAV receptor (AAVR) and anti‐AAV antibody A20, (ii) enable product elution under near‐physiological conditions (pH 6.0), and (iii) grant extended reusability by withstanding multiple regenerations. A20‐mimetic CYIHFSGYTNYNPSLKSC and AAVR‐mimetic CVIDGSQSTDDDKIC demonstrated excellent capture of serotypes belonging to distinct clones/clades – namely, AAV1, AAV2, AAV5, AAV6, AAV8, and AAV9. This corroborates the in silico models documenting their ability to target regions of the viral capsid that are conserved across all serotypes. CVIDGSQSTDDDKIC‐Toyopearl resin features binding capacity (≈1014vp mL−1) and product yields (≈60%–80%) on par with commercial adsorbents, and purifies AAV2 from HEK293 and Sf9 cell lysates with high recovery (up to 78%), reduction of host cell proteins (up to 700‐fold), and high transduction activity (up to 65%).more » « less
-
Abstract Recombinant adeno‐associated virus (rAAV) vectors are a promising platform for in vivo gene therapies. However, cost‐effective, well‐characterized processes necessary to manufacture rAAV therapeutics are challenging to develop without an understanding of how process parameters (PPs) affect rAAV product quality attributes (PQAs). In this work, a central composite orthogonal experimental design was employed to examine the influence of four PPs for transient transfection complex formation (polyethylenimine:DNA [PEI:DNA] ratio, total DNA/cell, cocktail volume, and incubation time) on three rAAV PQAs related to capsid content (vector genome titer, vector genome:capsid particle ratio, and two‐dimensional vector genome titer ratio). A regression model was established for each PQA using partial least squares, and a design space (DS) was defined in which Monte Carlo simulations predicted < 1% probability of failure (POF) to meet predetermined PQA specifications. Of the three PQAs, viral genome titer was most strongly correlated with changes in complexation PPs. The DS and acceptable PP ranges were largest when incubation time and cocktail volume were kept at mid‐high setpoints, and PEI:DNA ratio and total DNA/cell were at low‐mid setpoints. Verification experiments confirmed model predictive capability, and this work establishes a framework for studying other rAAV PPs and their relationship to PQAs.more » « less
-
Adeno-associated virus (AAV) capsids are among the leading gene delivery platforms used to treat a vast array of human diseases and conditions. AAVs exist in a variety of serotypes due to differences in viral protein (VP) sequences, with distinct serotypes targeting specific cells and tissues. As the utility of AAVs in gene therapy increases, ensuring their specific composition is imperative for correct targeting and gene delivery. From a quality control perspective, current analytical tools are limited in their selectivity for viral protein (VP) subunits due to their sequence similarities, instrumental difficulties in assessing the large molecular weights of intact capsids, and the uncertainty in distinguishing empty and filled capsids. To address these challenges, we combine two distinct analytical workflows that assess the intact capsids and VP subunits separately. First, selective temporal overview of resonant ions (STORI)-based charge detection-mass spectrometry (CD-MS) was applied for characterization of the intact capsids. Liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) separations were then used for capsid denaturing measurements. This multi-method combination was applied to 3 AAV serotypes (AAV2, AAV6, and AAV8) to evaluate their intact empty and filled capsid ratios and then examine the distinct VP sequences and modifications present.more » « less
-
The growing demand for viral vectors as nanoscale therapeutic agents in gene therapy necessitates efficient and scalable purification methods. This study examined the role of nanoscale biomaterials in optimizing viral vector clarification through a model system mimicking real AAV2 crude harvest material. Using lysed HEK293 cells and silica nanoparticles (20 nm) as surrogates for AAV2 crude harvest, we evaluated primary (depth filters) and secondary (membrane-based) filtration processes under different process parameters and solution conditions. These filtration systems were then assessed for their ability to recover nanoscale viral vectors while reducing DNA (without the need for endonuclease treatment), protein, and turbidity. Primary clarification demonstrated that high flux rates (600 LMH) reduced the depth filter’s ability to leverage adsorptive and electrostatic interactions, resulting in a lower DNA removal. Conversely, lower flux rates (150 LMH) enabled >90% DNA reduction by maintaining these interactions. Solution conductivity significantly influenced performance, with high conductivity screening electrostatic interactions, and the model system closely matching real system outcomes under these conditions. Secondary clarification highlighted material-dependent trade-offs. The PES membranes achieved exceptional AAV2 recovery rates exceeding 90%, while RC membranes excelled in DNA reduction (>80%) due to their respective surface charge and hydrophilic properties. The integration of the primary clarification step dramatically improved PES membrane performance, increasing the final flux from ~60 LMH to ~600 LMH. Fouling analysis revealed that real AAV2 systems experienced more severe and complex fouling compared to the model system, transitioning from intermediate blocking to irreversible cake layer formation, which was exacerbated by nanoscale impurities (~10–600 nm). This work bridges nanomaterial science and biomanufacturing, advancing scalable viral vector purification for gene therapy.more » « less
An official website of the United States government
