skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Cold Lid on a Warm Ocean: Indian Ocean Surface Rain Layers and Their Feedbacks to the Atmosphere
Abstract Ocean surface rain layers (RLs) form when relatively colder, fresher, less dense rain water stably stratifies the upper ocean. RLs cool sea surface temperature (SST) by confining surface evaporative cooling to a thin near‐surface layer, and generate sharp SST gradients between the cool RL and the surrounding ocean. In this study, ocean‐atmosphere coupled simulations of the November 2011 Madden‐Julian Oscillation (MJO) event are conducted with and without RLs to evaluate two pathways for RLs to influence the atmosphere. The first, termed the “SST gradient effect,” arises from the hydrostatic adjustment of the boundary layer to RL‐enhanced SST gradients. The second, termed the “SST effect,” arises from RL‐induced SST reductions impeding the development of deep atmospheric convection. RLs are found to sharpen SST gradients throughout the MJO suppressed and suppressed‐to‐enhanced convection transition phases, but their effect on convection is only detected during the MJO suppressed phase when RL‐induced SST gradients enhance low‐level convergence/divergence and broaden the atmospheric vertical velocity probability distribution below 5 km. The SST effect is more evident than the SST gradient effect during the MJO transition phase, as RLs reduce domain average SST by 0.03 K and narrow vertical velocity distribution, thus delaying onset of deep convection. A delayed SST effect is also identified, wherein frequent RLs during the MJO transition phase isolate accumulated subsurface ocean heat from the atmosphere. The arrival of strong winds at the onset of the MJO active phase erodes RLs and releases subsurface ocean heat to the atmosphere, supporting the development of deep convection.  more » « less
Award ID(s):
1924659
PAR ID:
10493669
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
129
Issue:
4
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Surface freshening through precipitation can act to stably stratify the upper ocean, forming a rain layer (RL). RLs inhibit subsurface vertical mixing, isolating deeper ocean layers from the atmosphere. This process has been studied using observations and idealized simulations. The present ocean modeling study builds upon this body of work by incorporating spatially resolved and realistic atmospheric forcing. Fine‐scale observations of the upper ocean collected during the Dynamics of the Madden‐Julian Oscillation field campaign are used to verify the General Ocean Turbulence Model (GOTM). Spatiotemporal characteristics of equatorial Indian Ocean RLs are then investigated by forcing a 2D array of GOTM columns with realistic and well‐resolved output from an existing regional atmospheric simulation. RL influence on the ocean‐atmosphere system is evaluated through analysis of RL‐induced modification to surface fluxes and sea surface temperature (SST). This analysis demonstrates that RLs cool the ocean surface on time scales longer than the associated precipitation event. A second simulation with identical atmospheric forcing to that in the first, but with rainfall set to zero, is performed to investigate the role of rain temperature and salinity stratification in maintaining cold SST anomalies within RLs. Approximately one third, or 0.1°C, of the SST reduction within RLs can be attributed to rain effects, while the remainder is attributed to changes in atmospheric temperature and humidity. The prolonged RL‐induced SST anomalies enhance SST gradients that have been shown to favor the initiation of atmospheric convection. These findings encourage continued research of RL feedbacks to the atmosphere. 
    more » « less
  2. Abstract Previous observational and modeling studies have suggested that moisture plays a dominant role in Madden–Julian oscillation (MJO) evolution. Using a realistic MJO simulation by incorporating the role of mesoscale stratiform heating in the Zhang–McFarlane deep convection scheme in the National Center for Atmospheric Research Community Atmosphere Model, version 5.3 (NCAR CAM5.3), this study investigates the factors responsible for the improved MJO simulation by examining moisture variations during different MJO phases. The results of column moist static energy (MSE) and moisture budgets show that during the suppressed phases of MJO, vertical advection acts to increase MSE anomalies for the development of deep convection while radiative heating and surface heat flux decrease MSE. The opposite holds true at the MJO mature phase. However, their roles largely cancel each other, leaving horizontal advection to play a major role in the low-level MSE increase during the suppressed phase of the MJO and MSE decrease after the MJO mature phase. A further analysis combining moisture and temperature budget equations is performed to demonstrate the effects of vertical advection and cloud processes within the column at each level. The vertical profiles of column-confined moisture tendency show that large-scale vertical advection induced by latent heat release and evaporation within shallow convective clouds is also important to the lower-tropospheric moistening during suppressed phases. This confirms the role of shallow convection in low-level moistening ahead of MJO deep convection. Radiative heating is vital across all MJO phases, and its warming effects keep the column humidity anomaly maintained in mature phases. None of these features are reproduced by the standard CAM5.3. 
    more » « less
  3. Abstract Given the increasing attention in forecasting weather and climate on the subseasonal time scale in recent years, National Oceanic and Atmospheric Administration (NOAA) announced to support Climate Process Teams (CPTs) which aim to improve the Madden‐Julian Oscillation (MJO) prediction by NOAA’s global forecasting models. Our team supported by this CPT program focuses primarily on the improvement of upper ocean mixing parameterization and air‐sea fluxes in the NOAA Climate Forecast System (CFS). Major improvement includes the increase of the vertical resolution in the upper ocean and the implementation of General Ocean Turbulence Model (GOTM) in CFS. In addition to existing mixing schemes in GOTM, a newly developed scheme based on observations in the tropical ocean, with further modifications, has been included. A better performance of ocean component is demonstrated through one‐dimensional ocean model and ocean general circulation model simulations validated by the comparison with in‐situ observations. These include a large sea surface temperature (SST) diurnal cycle during the MJO suppressed phase, intraseasonal SST variations associated with the MJO, ocean response to atmospheric cold pools, and deep cycle turbulence. Impact of the high‐vertical resolution of ocean component on CFS simulation of MJO‐associated ocean temperature variations is evident. Also, the magnitude of SST changes caused by high‐resolution ocean component is sufficient to influence the skill of MJO prediction by CFS. 
    more » « less
  4. Abstract Regional ocean–atmospheric interactions in the summer tropical Indo–northwest Pacific region are investigated using a tropical Pacific Ocean–global atmosphere pacemaker experiment with a coupled ocean–atmospheric model (cPOGA) and a parallel atmosphere model simulation (aPOGA) forced with sea surface temperature (SST) variations from cPOGA. Whereas the ensemble mean features pronounced influences of El Niño–Southern Oscillation (ENSO), the ensemble spread represents internal variability unrelated to ENSO. By comparing the aPOGA and cPOGA, this study examines the effect of the ocean–atmosphere coupling on the ENSO-unrelated variability. In boreal summer, ocean–atmosphere coupling induces local positive feedback to enhance the variance and persistence of the sea level pressure and rainfall variability over the northwest Pacific and likewise induces local negative feedback to suppress the variance and persistence of the sea level pressure and rainfall variability over the north Indian Ocean. Anomalous surface heat fluxes induced by internal atmosphere variability cause SST to change, and SST anomalies feed back onto the atmosphere through atmospheric convection. The local feedback is sensitive to the background winds: positive under the mean easterlies and negative under the mean westerlies. In addition, north Indian Ocean SST anomalies reinforce the low-level anomalous circulation over the northwest Pacific through atmospheric Kelvin waves. This interbasin interaction, along with the local feedback, strengthens both the variance and persistence of atmospheric variability over the northwest Pacific. The response of the regional Indo–northwest Pacific mode to ENSO and influences on the Asian summer monsoon are discussed. 
    more » « less
  5. Abstract Substantial (∼2°C) basin averaged sea surface temperature (SST) cooling in the Banda Sea occurred in less than a  14‐day period during the 2015 boreal winter Madden‐Julian Oscillation (MJO). Such rapid and large cooling associated with the MJO has not been reported at least in the last two decades. Processes that control the substantial cooling during the 2015 MJO event are examined using high‐resolution ocean reanalysis and one‐dimensional (1‐D) ocean model simulations. Previous studies suggest that MJO‐induced SST variability in the Banda Sea is primarily controlled by surface heat flux. However, heat budget analysis of the model indicates that entrainment cooling produced by vertical mixing contributes more than surface heat flux for driving the basin‐wide SST cooling during the 2015 event. Analysis of the ocean reanalysis further demonstrates that the prominent coastal upwelling around islands in the southern basin occurs near the end of the cooling period. The upwelled cold waters are advected by MJO‐induced surface currents to a large area within the Banda Sea, which further maintains the basin‐wide cold SST. These results are compared with another MJO‐driven substantial cooling event during the boreal winter of 2007 in which the cooling is mostly driven by surface heat flux. Sensitivity experiments, in which initial temperature conditions for the two events are replaced by each other, demonstrate that the elevated thermocline associated with the 2015 strong El Niño is largely responsible for the intensified cooling generated by the vertical mixing with colder subsurface waters. 
    more » « less