skip to main content


Title: Colonial breeding impacts potentially fitness-relevant cognitive processes in barn swallows
Abstract

Many animals breed colonially, often in dense clusters, representing a complex social environment with cognitive demands that could ultimately impact individual fitness. However, the effects of social breeding on the evolution of cognitive processes remain largely unknown. We tested the hypothesis that facultative colonial breeding influences attention and decision-making. Barn swallows (Hirundo rustica) breed in solitary pairs or in a range of colony sizes, up to dozens of pairs. We tested for selective attention to social information with playbacks of conspecific alarm calls and for decision-making with simulated predator intrusions, across a range of colony sizes from 1 to 33 pairs. We also evaluated the adaptive value of both processes by measuring seasonal reproductive success. Swallows breeding in larger colonies were more selective in their attention to social information. Birds breeding in larger colonies were also less risk averse, deciding to return more quickly to their nests after a predator approach paradigm. Finally, birds that showed higher selective attention hatched more eggs and birds that returned to their nests more quickly after a predator intrusion had more nestlings. Although we cannot fully attribute these fitness outcomes to the cognitive measures considered in this study, our results suggest that social breeding plays a role in adaptively shaping both the acquisition of social information and decision-making.

 
more » « less
NSF-PAR ID:
10493670
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Animal Cognition
Volume:
27
Issue:
1
ISSN:
1435-9456
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Maculation on avian eggshells has the potential to serve as an identity signal, and this information may help females recognize their eggs/nest or reject foreign eggs laid by hetero‐ or conspecific brood parasites. Recognizing eggs could be adaptive in cases where birds nest in dense colonies, as reports of conspecific brood parasitism are over‐represented in colony‐nesting species. We utilized the variation in breeding biology (solitary vs. colonial breeding) and eggshell phenotype in swallows and martins (Hirundinidae) to test for correlated evolution between these traits, while also accounting for nest type, as maculation may camouflage eggs in open‐cup nests. We found that maculated eggs were more likely to be laid by species that breed socially and build open‐cup nests where maculation would be more visible than in dark cavity nests.

     
    more » « less
  2. Explaining why animal groups vary in size is a fundamental problem in behavioral ecology. One hypothesis is that life-history differences among individuals lead to sorting of phenotypes into groups of different sizes where each individual does best. This hypothesis predicts that individuals should be relatively consistent in their use of particular group sizes across time. Little is known about whether animals’ choice of group size is repeatable across their lives, especially in long-lived species. We studied consistency in choice of breeding-colony size in colonially nesting cliff swallows ( Petrochelidon pyrrhonota ) in western Nebraska, United States, over a 32-year period, following 6,296 birds for at least four breeding seasons. Formal repeatability of size choice for the population was about 0.41. About 45% of individuals were relatively consistent in choice of colony size, while about 40% varied widely in the colony size they occupied. Birds using the smaller and larger colonies appeared more consistent in size use than birds occupying more intermediate sized colonies. Consistency in colony size was also influenced by whether a bird used the same physical colony site each year and whether the site had been fumigated to remove ectoparasites. The difference between the final and initial colony sizes for an individual, a measure of the net change in its colony size over its life, did not significantly depart from 0 for the dataset as a whole. However, different year-cohorts did show significant net change in colony size, both positive and negative, that may have reflected fluctuating selection on colony size among years based on climatic conditions. The results support phenotypic sorting as an explanation for group size variation, although cliff swallows also likely use past experience at a given site and the extent of ectoparasitism to select breeding colonies. 
    more » « less
  3. null (Ed.)
    The cognitive-buffer hypothesis proposes that more harsh and unpredictable environments favour animals with larger brains and resulting greater cognitive skills. Comparisons across taxa have supported the hypothesis, but it has rarely been tested within a species. We measured brain size, as inferred from head dimensions, for 1141 cliff swallow specimens collected in western Nebraska, 1982–2018. Cliff swallows starving to death during unusual late-spring cold snaps had significantly smaller brains than those dying from other causes, suggesting that brain size in this species can affect foraging success and that greater cognitive ability may confer advantages when conditions exceed normal environmental extremes. Brain size declined significantly with the size of the breeding colony from which a specimen came. Larger brains may be favoured in smaller colonies that represent more unpredictable and more challenging social environments where there is less public information on food sources and less collective vigilance against predators, even in relatively normal conditions. Our results provide intraspecific support for the cognitive-buffer hypothesis and emphasize the potential evolutionary impact of rare climatic events. 
    more » « less
  4. Abstract

    Extra‐pair paternity (EPP) is a widespread phenomenon in birds. Researchers have long hypothesized that EPP must confer a fitness advantage to extra‐pair offspring (EPO), but empirical support for this hypothesis is definitively mixed. This could be because genetic benefits of EPP only exist in a subset of environmental contexts to which a population is exposed. From 2013 to 2015, we manipulated perceived predator density in a population of tree swallows (Tachycineta bicolor) breeding in New York to see whether fitness outcomes of extra‐pair and within‐pair offspring (WPO) varied with predation risk. In nests that had been exposed to predators, EPO were larger, longer‐winged and heavier than WPO. In nonpredator nests, WPO tended to be larger, longer‐winged and heavier than EPO, though the effect was nonsignificant. We found no differences in age, morphology or stress physiology between extra‐pair and within‐pair sires from the same nest, suggesting that additive genetic benefits cannot fully explain the differences in nestling size that we observed. The lack of an effect of predator exposure on survival or glucocorticoid stress physiology of EPO and WPO further suggests that observed size differences do not reflect more general variation in intrinsic genetic quality. Instead, we suggest that size differences may have arisen through differential investment into EPO and WPO by females, perhaps because EPO and WPO represent different reproductive strategies, with each type of nestling conferring a fitness advantage in specific ecological contexts.

     
    more » « less
  5. Abstract

    Group living often requires maintaining dynamic and varied relationships with fellow group members, while simultaneously monitoring and interacting with external competitors. Group members in many social species vocalize together to produce duets or choruses—coordinated, often conspicuous vocal displays—that may play a role in these interactions. Compared with male–female duets, however, relatively little research exists on the function and adaptive significance of group choruses, which involve three or more individuals. Here we investigate chorusing behavior in the greater ani (Crotophaga major), a communally breeding cuckoo that nests in stable social groups of four to eight unrelated individuals. Groups may remain together for several years on the same nesting territory, and groups occasionally destroy each other's clutches in conflicts over high‐quality territories. We asked whether the raucous, highly stereotyped choruses performed by ani groups are primarily used for intra‐ or intergroup communication, and whether they contain information about the identity of the social group and the number of birds vocalizing. Behavioral observations and acoustic recordings from three breeding seasons revealed that choruses typically occurred during social interactions within the group (78% of choruses) or in response to a predator or extra‐group individual (17%) and only rarely in intergroup interactions (4%). Consistent with this finding, choruses did not reliably reflect the number of birds vocalizing, and we found only limited evidence for group‐specific acoustic signatures (driven by a single group whose choruses were highly distinct). These results suggest that group choruses play an important role in intra‐group signaling, potentially in contexts such as group formation, reinforcement of social bonds within the group, and/or collective decision‐making, and they motivate new research questions about the role of collective signaling in social evolution.

     
    more » « less