skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lightning Characteristics Associated With Storm Modes Observed During RELAMPAGO
Abstract Global satellite studies show a maximum in deep convection and lightning downstream of the Andes in subtropical South America. The Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign was designed to investigate the physical processes that contribute to the rapid development of deep convection and mesoscale convective systems (MCSs) in Argentina. A lightning mapping array (LMA) was deployed to Argentina as part of RELAMPAGO to collect lightning observations from extreme storms in the region. This study combines lightning data from the LMA and the Geostationary Lightning Mapper onboardGOES‐16with 1‐km gridded radar data to examine the electrical characteristics of a variety of convective storms throughout their life cycle observed during RELAMPAGO. Results from the full campaign show 48% of flashes are associated with deep convection that occurs along the eastern edge of the Sierras de Córdoba (SDC) overnight. These flashes are 65 km2smaller on average compared to stratiform flashes, which occur most frequently 50–100 km east of the SDC in the early morning hours, consistent with the upscale growth of MCSs off the terrain. Analysis of the 13–14 December MCS shows that sharp increases in flash rates correspond to deep and wide convective cores that have high graupel and hail mass, 35‐dBZ volume, and ice water path. This work validates previous satellite studies of lightning in the region, but also provides higher spatial and temporal resolution information across the convective life cycle that has not been available in previous studies.  more » « less
Award ID(s):
2146709 1661657
PAR ID:
10493682
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
129
Issue:
4
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A new automated method to retrieve charge layer polarity from flashes, named Chargepol, is presented in this paper. Using data from the NASA Lightning Mapping Array (LMA) deployed during the Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign in Cordoba, Argentina, from November 2018 to April 2019, this method estimates the polarity of vertical charge distributions and their altitudes and thicknesses (or vertical depth) using the very‐high frequency (VHF) source emissions detected by LMAs. When this method is applied to LMA data for extended periods of time, it is capable of inferring a storm's bulk electrical charge structure throughout its life cycle. This method reliably predicted the polarity of charge within which lightning flashes propagated and was validated in comparison to methods that require manual assignment of polarities via visual inspection of VHF lightning sources. Examples of normal and anomalous charge structures retrieved using Chargepol for storms in Central Argentina during RELAMPAGO are presented for the first time. Application of Chargepol to five months of LMA data in Central Argentina and several locations in the United States allowed for the characterization of the charge structure in these regions and for a reliable comparison using the same methodology. About 13.3% of Cordoba thunderstorms were defined by an anomalous charge structure, slightly higher than in Oklahoma (12.5%) and West Texas (11.1%), higher than Alabama (7.3%), and considerably lower than in Colorado (82.6%). Some of the Cordoba anomalous thunderstorms presented enhanced low‐level positive charge, a feature rarely if ever observed in Colorado thunderstorms. 
    more » « less
  2. Abstract The Córdoba Argentina Marx Meter Array (CAMMA), consisting of 10 second‐generation Huntsville Alabama Marx Meter Array (HAMMA 2) sensors, operated at Córdoba, Argentina, during the Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign in late 2018. Initial results obtained from the campaign demonstrate that the new sensor is able to provide a significantly more detailed depiction of various lightning processes than its first generation. The lightning flashes mapped by the CAMMA and a colocated Lightning Mapping Array (LMA) were compared. The overall flash structures mapped by the CAMMA and the LMA look similar for most of the flashes. However, comparisons at smaller time scale show that the majority of CAMMA and LMA sources are not concurrent, indicating that unmatched sources were possibly due to different physical processes in leader propagation dominating different frequencies and differences in data processing and location techniques. 
    more » « less
  3. null (Ed.)
    Abstract This article provides an overview of the experimental design, execution, education and public outreach, data collection, and initial scientific results from the Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign. RELAMPAGO was a major field campaign conducted in Córdoba and Mendoza provinces in Argentina, and western Rio Grande do Sul State in Brazil in 2018-2019 that involved more than 200 scientists and students from the US, Argentina, and Brazil. This campaign was motivated by the physical processes and societal impacts of deep convection that frequently initiates in this region, often along the complex terrain of the Sierras de Córdoba and Andes, and often grows rapidly upscale into dangerous storms that impact society. Observed storms during the experiment produced copious hail, intense flash flooding, extreme lightning flash rates and other unusual lightning phenomena, but few tornadoes. The 5 distinct scientific foci of RELAMPAGO: convection initiation, severe weather, upscale growth, hydrometeorology, and lightning and electrification are described, as are the deployment strategies to observe physical processes relevant to these foci. The campaign’s international cooperation, forecasting efforts, and mission planning strategies enabled a successful data collection effort. In addition, the legacy of RELAMPAGO in South America, including extensive multi-national education, public outreach, and social media data-gathering associated with the campaign, is summarized. 
    more » « less
  4. Abstract The lightning data products generated by the low‐frequency (LF) radio lightning locating system (LLS) deployed during the Remote sensing of Electrification, Lightning, and Mesoscale/Microscale Processes with Adaptive Ground Observation (RELAMPAGO) field campaign in Argentina provide a valuable data set to research the lightning evolution and characteristics of convective storms that produce high‐impact weather. LF LLS data sets offer a practical range for mesoscale studies, allowing for the observation of lightning characteristics of storms such as mesoscale convective systems or large convective lines that travel longer distances which are not necessarily staying in range of regional VHF‐based lightning detection systems throughout their lifetime. LF LLSs also provide different information than optical space‐borne lightning detectors. Lightning measurements exclusive to LF systems include discharge peak current, lightning polarity, and lightning type classification based on the lightning‐emitted radio waveform. Furthermore, these measurements can provide additional information on flash rates (e.g., positive cloud‐to‐ground flash rate) or narrow bipolar events which may often be associated with dynamically intense convection. In this article, the geolocation and data processing of the LF data set collected during RELAMPAGO is fully described and its performance characterized, with location accuracy better than 10 km. The detection efficiency (DE) of the data set is compared to that of the Geostationary Lightning Mapper, and spatiotemporal DE losses in the LF data set are discussed. Storm case studies on November 10, 2018, highlight the strengths of the data set, which include robust flash clustering and insightful flash rate and peak current measures, while illustrating how its limitations, including DE losses, can be managed. 
    more » « less
  5. Abstract Intense deep convection and large mesoscale convective systems (MCSs) are known to occur downstream of the Andes in subtropical South America. Deep convection is often focused along the Sierras de Córdoba (SDC) in the afternoon and then rapidly grows upscale and moves to the east overnight. However, how the Andes and SDC impact the life cycle of MCSs under varying synoptic conditions is not well understood. Two sets of terrain-modification experiments using WRF are used to investigate the impact of topography in different synoptic regimes. The first set is run on the 13–14 December 2018 MCS case from RELAMPAGO, which featured a deep synoptic trough, strong lee cyclogenesis near the SDC, an enhanced low-level jet, and rapid upscale growth of an MCS. When the Andes are reduced by 50%, the lee cyclone and low-level jet that develop are weaker than with the full Andes, and the resulting MCS is weak and moves faster to the east. When the SDC are removed, few differences between the environment and resulting MCS relative to the control run are seen. A second set of experiments are run on the 25–26 January 2019 case in which a large MCS developed over the SDC and remained tied there for an extended period under weak synoptic forcing. The experiment that produces the most similar MCS to the control is when the Andes are reduced by 50% while maintaining the height of the SDC, suggesting the SDC may play a more important role in the MCS life cycle under quiescent synoptic conditions. 
    more » « less