Abstract 1. The release of permafrost‐derived nitrogen (N) has the potential to fertilize tundra vegetation, which in turn may stimulate productivity and thus offset carbon (C) losses from thawing permafrost. Below‐ground plant traits may mediate ecosystem response to permafrost thaw and associated feedbacks to the atmosphere by differentially conferring access to deep, newly thawed permafrost N. Yet, identifying roots and quantifying root N uptake from deep, cold soils in complex plant communities has proved challenging to date. 2. We investigated plant acquisition of experimentally added 15N isotope tracer applied at the permafrost boundary in graminoid‐ and shrub‐dominated tundra at Eight Mile Lake, Alaska, when the thaw front was close to its maximum depth, simulating the release of newly thawed permafrost N. We used molecular tools to verify species and estimate biomass, nitrogen, and isotope pools. 3. Root biomass depth distributions follow an asymptotic relationship with depth, typical of other ecosystems. Few species had roots occurring close to the thaw front. Rubus chamaemorus, a short‐statured non‐mycorrhizal forb, and Carex bigelowii, a sedge, consistently had the deepest roots. Twenty‐four hours after isotope addition, we observed that deep‐rooted, non‐mycorrhizal species had the highest 15N enrichment values in their fine root tissue indicating that they access deep N late in the growing season when the thaw front is deepest. Deep‐rooted plants are therefore able to immediately take up newly thawed permafrost‐derived N. During the following growing season, herbaceous, non‐mycorrhizal plants allocated tracer above‐ground before woody, mycorrhizal plants. Ectomycorrhizal deciduous and ericoid mycorrhizal evergreen shrubs, by contrast, did not have immediate access to the deep N tracer and assimilated it into new foliar tissue gradually over the following growing season. 4. Synthesis. Graminoids and forbs that have immediate access to deep N represent a modest C sink compared to C emissions from thawing permafrost. However, the effects of deep N fertilization on shrubs over longer time‐scales may stimulate productivity and account for a more considerable N and C sink, thus constraining the permafrost C‐climate feedback.
more »
« less
Root‐associated fungi and acquisitive root traits facilitate permafrost nitrogen uptake from long‐term experimentally warmed tundra
- Root-associated fungi (RAF) and root traits regulate plant acquisition of nitrogen (N), which is limiting to growth in Arctic ecosystems. With anthropogenic warming, a new N source from thawing permafrost has the potential to change vegetation composition and increase productivity, influencing climate feedbacks. Yet, the impact of warming on tundra plant root traits, RAF, and access to permafrost N is uncertain. - We investigated the relationships between RAF, species-specific root traits, and uptake of N from the permafrost boundary by tundra plants experimentally warmed for nearly three decades at Toolik Lake, Alaska. - Warming increased acquisitive root traits of nonmycorrhizal and mycorrhizal plants. RAF community composition of ericoid (ERM) but not ectomycorrhizal (ECM) shrubs was impacted by warming and correlated with root traits. RAF taxa in the dark septate endophyte, ERM, and ECM guilds strongly correlated with permafrost N uptake for ECM and ERM shrubs. Overall, a greater proportion of variation in permafrost N uptake was related to root traits than RAF. - Our findings suggest that warming Arctic ecosystems will result in interactions between roots, RAF, and newly thawed permafrost that may strongly impact feedbacks to the climate system through mechanisms of carbon and N cycling.
more »
« less
- PAR ID:
- 10493896
- Publisher / Repository:
- New Phytologist
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 242
- ISSN:
- 0028-646X
- Subject(s) / Keyword(s):
- Alaska dark septate endophyte ectomycorrhizal fungi ericoid mycorrhizal fungi isotope 15N moist acidic tundra shrub expansion
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Deciduous shrubs are expanding across the graminoid-dominated nutrient-poor arctic tundra. Absorptive root traits of shrubs are key determinants of nutrient acquisition strategy from tundra soils, but the variations of shrub root traits within and among common shrub genera across the arctic climatic gradient are not well resolved. Consequently, the impacts of arctic shrub expansion on belowground nutrient cycling remain largely unclear. Here, we collected roots from 170 plots of three commonly distributed shrub genera ( Alnus , Betula , and Salix ) and a widespread sedge ( Eriophorum vaginatum ) along a climatic gradient in northern Alaska. Absorptive root traits that are relevant to the strategy of plant nutrient acquisition were determined. The influence of aboveground dominant vegetation cover on the standing root biomass, root productivity, vertical rooting profile, as well as the soil nitrogen (N) pool in the active soil layer was examined. We found consistent root trait variation among arctic plant genera along the sampling transect. Alnus and Betula had relatively thicker and less branched, but more frequently ectomycorrhizal colonized absorptive roots than Salix , suggesting complementarity between root efficiency and ectomycorrhizal dependence among the co-existing shrubs. Shrub-dominated plots tended to have more productive absorptive roots than sedge-dominated plots. At the northern sites, deep absorptive roots (>20 cm depth) were more frequent in birch-dominated plots. We also found shrub roots extensively proliferated into the adjacent sedge-dominated plots. The soil N pool in the active layer generally decreased from south to north but did not vary among plots dominated by different shrub or sedge genera. Our results reveal diverse nutrient acquisition strategies and belowground impacts among different arctic shrubs, suggesting that further identifying the specific shrub genera in the tundra landscape will ultimately provide better predictions of belowground dynamics across the changing arctic.more » « less
-
Abstract In the Arctic tundra, warming is anticipated to stimulate nutrient release and potentially alleviate plant nutrient limitations. Typically simulated by fertilization experiments that saturate plant nutrient demand, future increases in soil fertility are thought to favor ectomycorrhizal (EcM) over ericaceous shrubs and have often been identified as a key driver of Arctic shrub expansion. However, the projected increases in fertility will likely vary in their alleviation of nutrient limitations. The resulting responses of shrubs and their mycorrhizae across the gradient of nutrient limitation may be nonlinear and could contradict the current predictions of tundra vegetation shifts. We compared the functional responses of two dominant shrubs, EcM dwarf birch (Betula nana) and ericaceous Labrador tea (Rhododendron tomentosum), across a long‐term nitrogen and phosphorus fertilization gradient experiment in Arctic Alaska. Using linear mixed‐effects modeling, we tested the responses of shrub cover, height, and root enzyme activities to soil fertility. We found thatB. nanacover and height linearly increased with soil fertility. In contrast,R. tomentosumcover initially increased, but decreased after surpassing the intermediate levels of increased soil fertility. Its height did not change. Enzyme activity did not respond to soil fertility on EcM‐colonizedB. nanaroots, but sharply declined onR. tomentosumroots. Overall, the nonlinear responses of shrubs to our fertility gradient demonstrate the importance of experiments grounded in replicated regression design. Our results indicate that under moderate increases in soil fertility, Arctic shrub expansion may not only include deciduous EcM shrubs but also ericaceous shrubs. Regardless of shifts aboveground, changes in root enzyme activity belowground point to some EcM shrub species playing a more influential role in tundra soils; as EcM roots remained steady in their liberation of soil organic nutrients with heightened soil fertility, degradative root enzyme activity on the dominant ericaceous shrub dropped—in some instances with even the slightest increase in fertility.more » « less
-
ABSTRACT Tundra ecosystems are typically carbon (C) rich but nitrogen (N) limited. Since biological N 2 fixation is the major source of biologically available N, the soil N 2 -fixing (i.e., diazotrophic) community serves as an essential N supplier to the tundra ecosystem. Recent climate warming has induced deeper permafrost thaw and adversely affected C sequestration, which is modulated by N availability. Therefore, it is crucial to examine the responses of diazotrophic communities to warming across the depths of tundra soils. Herein, we carried out one of the deepest sequencing efforts of nitrogenase gene ( nifH ) to investigate how 5 years of experimental winter warming affects Alaskan soil diazotrophic community composition and abundance spanning both the organic and mineral layers. Although soil depth had a stronger influence on diazotrophic community composition than warming, warming significantly ( P < 0.05) enhanced diazotrophic abundance by 86.3% and aboveground plant biomass by 25.2%. Diazotrophic composition in the middle and lower organic layers, detected by nifH sequencing and a microarray-based tool (GeoChip), was markedly altered, with an increase of α-diversity. Changes in diazotrophic abundance and composition significantly correlated with soil moisture, soil thaw duration, and plant biomass, as shown by structural equation modeling analyses. Therefore, more abundant diazotrophic communities induced by warming may potentially serve as an important mechanism for supplementing biologically available N in this tundra ecosystem. IMPORTANCE With the likelihood that changes in global climate will adversely affect the soil C reservoir in the northern circumpolar permafrost zone, an understanding of the potential role of diazotrophic communities in enhancing biological N 2 fixation, which constrains both plant production and microbial decomposition in tundra soils, is important in elucidating the responses of soil microbial communities to global climate change. A recent study showed that the composition of the diazotrophic community in a tundra soil exhibited no change under a short-term (1.5-year) winter warming experiment. However, it remains crucial to examine whether the lack of diazotrophic community responses to warming is persistent over a longer time period as a possibly important mechanism in stabilizing tundra soil C. Through a detailed characterization of the effects of winter warming on diazotrophic communities, we showed that a long-term (5-year) winter warming substantially enhanced diazotrophic abundance and altered community composition, though soil depth had a stronger influence on diazotrophic community composition than warming. These changes were best explained by changes in soil moisture, soil thaw duration, and plant biomass. These results provide crucial insights into the potential factors that may impact future C and N availability in tundra regions.more » « less
-
null (Ed.)Aims Climate warming in northern ecosystems is triggering widespread permafrost thaw, during which deep soil nutrients, such as nitrogen, could become available for biological uptake. Permafrost thaw shift frozen organic matter to a saturated state, which could impede nutrient uptake. We assessed whether soil nitrogen can be accessed by the deep roots of vascular plants in thermokarst bogs, potentially allowing for increases in primary productivity. Methods We conducted an ammonium uptake experiment on Carex aquatilis Wahlenb. roots excavated from thermokarst bogs in interior Alaska. Ammonium uptake capacity was compared between deep and shallow roots. We also quantified differences in root ammonium uptake capacity and plant size characteristics (plant aboveground and belowground biomass, maximum shoot height, and maximum root length) between the actively-thawing margin and the centre of each thermokarst bog as a proxy for time-following-thaw. Results Deep roots had greater ammonium uptake capacity than shallow roots, while rooting depth, but not belowground biomass, was positively correlated with aboveground biomass. Although there were no differences in aboveground biomass between the margin and centre, our findings suggest that plants can benefit from investing in the acquisition of resources near the vertical thaw front. Conclusions Our results suggest that deep roots of C. aquatilis can contribute to plant nitrogen uptake and are therefore able to tolerate anoxic conditions in saturated thermokarst bogs. This work furthers our understanding of how subarctic and wetland plants respond to warming and how enhanced plant biomass production might help offset ecosystem carbon release with future permafrost thaw.more » « less
An official website of the United States government

