skip to main content


Title: Refining Holocene sea‐level variations for the Lofoten and Vesterålen archipelagos, northern Norway: implications for prehistoric human–environment interactions
ABSTRACT

The Lofoten and Vesterålen archipelagos are located off the outer coast of northern Norway far from the center of the former Fennoscandian Ice Sheet and near the continental shelf edge. Existing relative sea‐level (RSL) data indicate a pronounced mid‐Holocene transgression and interesting connections with the region's prehistoric human settlement history. Here we present seven new sea‐level index points from isolation basins and five terrestrial limiting points from a coastal sedimentary sequence to refine the region's RSL history. Ingression and isolation contacts in isolation basin sediment cores are identified using sedimentary geochemical data, scanning X‐ray fluorescence profiles and phytoplankton analysis. The ages of these contacts are determined using radiocarbon‐based age models. Our index points range from 11.2 to 1.5k cal a bpand are combined with previously published data to predict the spatiotemporal evolution of sea level in this region using an ensemble of spatiotemporal empirical hierarchical models (STEHME). The new RSL curve constrains the timing of the mid‐Holocene transgression, which occurred from c. 9 to 6k cal a bpwhen sea level increased from −4 to 7 m above present day. From c. 6 to 5k cal a bp, RSL rapidly fell to c. 4 m above present values, and more gradually declined at an average rate of c. 0.8 m ka−1over the last 5k cal a bp.Isobase maps derived using the STEHME show a decrease in the regional shoreline gradients since the transgression maximum from 0.25 to 0.07 m km−1. Our data also better define how RSL variations influenced the location and preservation of coastal settlement locations and harbors from the early Stone Age through historic intervals, improving understanding of regional human–environment interactions.

 
more » « less
NSF-PAR ID:
10493988
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Quaternary Science
ISSN:
0267-8179
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    It is increasingly important to document past records of hydrologic change in areas that are drought‐prone to better predict the region's future vulnerability to recharge and water supply. Holocene spring‐associated carbonate deposits serve as terrestrial records of water balance that can complement other local, high‐resolution proxies that are moisture‐sensitive. Here we examine two carbonate deposits (one inactive perched tufa site and one active fluvial tufa site) that form from ambient‐temperature freshwater springs, as proxies of their depositional conditions. Radiocarbon (14C) analyses of charcoal fragments from the inactive perched tufa record depositional ages of 6.2 ± 0.06 (2σ) cal kabpand 8.0 ± 0.04 (2σ) cal kabpand agree with the age models from other proxies of past pluvial periods in the region (~16 to 5 ka). The active fluvial tufas date to 853 ± 0.4 calbp,representing conditions similar to modern flow. Geomorphologic and radiocarbon results indicate the perched tufa reflects wetter conditions fed by a higher water table. Stable isotopic analyses of carbonate (δ13C, δ18O) reveal distinct isotopic values between modern and early–mid‐Holocene tufa. This work underscores potential for the analysis of other moisture‐sensitive tufa deposits in coastal central California.

     
    more » « less
  2. Abstract

    Maritime occupation sites in upland dune settings (10–150 m elevation mean sea level) in San Miguel Island (37 km2in size), located 40 km offshore of the south‐central California mainland, were analyzed for reported ages, component types, and distances from paleo‐shorelines around the island’s shelf platform. The occupation sites (dated ~12,200 to 200 cal B.P.) include numerous shell middens and lithic scatters. Some sites contain Paleocoastal stemmed points and chipped stone crescents, the latter believed to be used for hunting waterfowl. What prompted the site occupations in the semiarid dune‐covered coastal bluffs and interior‐plateaus that were located 10–150 m above and 1–4 km distant from age‐correlative paleo‐shorelines? Eolianite dune settings in San Miguel include ephemeral freshwater sources from: (a) vernal pond/wetlands in interior plateaus; (b) gullies or creeks in the dune‐covered bluff slopes; (c) springs exposed in current sea cliffs or canyons; and (d) pond/wetlands barraged by sand ramps on the windward bluff slopes and gully drainages. These freshwater features are proposed to have attracted humans and their hunting, shellfish processing, and plant gathering activities to upland localities, as now preserved above the island’s shelf platform that was submerged by the Holocene marine transgression.

     
    more » « less
  3. Abstract

    Epikarst estuary response to hydroclimate change remains poorly understood, despite the well-studied link between climate and karst groundwater aquifers. The influence of sea-level rise and coastal geomorphic change on these estuaries obscures climate signals, thus requiring careful development of paleoenvironmental histories to interpret the paleoclimate archives. We used foraminifera assemblages, carbon stable isotope ratios (δ13C) and carbon:nitrogen (C:N) mass ratios of organic matter in sediment cores to infer environmental changes over the past 5300 years in Celestun Lagoon, Yucatan, Mexico. Specimens (> 125 µm) from modern core top sediments revealed three assemblages: (1) a brackish mangrove assemblage of agglutinatedMiliamminaandAmmotiumtaxa and hyalineHaynesina(2) an inner-shelf marine assemblage ofBolivina,Hanzawaia, andRosalina,and (3) a brackish assemblage dominated byAmmoniaandElphidium. Assemblages changed along the lagoon channel in response to changes in salinity and vegetation, i.e. seagrass and mangrove. In addition to these three foraminifera assemblages, lagoon sediments deposited since 5300 cal yr BP are comprised of two more assemblages, defined byArchaiasandLaevipeneroplis,which indicate marineThalassiaseagrasses, andTrichohyalus,which indicates restricted inland mangrove ponds. Our data suggest that Celestun Lagoon displayed four phases of development: (1) an inland mangrove pond (5300 BP) (2) a shallow unprotected coastline with marine seagrass and barrier island initiation (4900 BP) (3) a protected brackish lagoon (3000 BP), and (4) a protected lagoon surrounded by mangroves (1700 BP). Stratigraphic (temporal) changes in core assemblages resemble spatial differences in communities across the modern lagoon, from the southern marine sector to the northern brackish region. Similar temporal patterns have been reported from other Yucatan Peninsula lagoons and fromcenotes(Nichupte, Aktun Ha), suggesting a regional coastal response to sea level rise and climate change, including geomorphic controls (longshore drift) on lagoon salinity, as observed today. Holocene barrier island development progressively protected the northwest Yucatan Peninsula coastline, reducing mixing between seawater and rain-fed submarine groundwater discharge. Superimposed on this geomorphic signal, assemblage changes that are observed reflect the most severe regional wet and dry climate episodes, which coincide with paleoclimate records from lowland lake archives (Chichancanab, Salpeten). Our results emphasize the need to consider coastal geomorphic evolution when using epikarst estuary and lagoon sediment archives for paleoclimate reconstruction and provide evidence of hydroclimate changes on the Yucatan Peninsula.

     
    more » « less
  4. Palaeomagnetic investigation of three sediment cores from the Chukchi and Beaufort Sea margins was performed to better constrain the regional chronostratigraphy and to gain insights into sediment magnetic properties at the North American Arctic margin during the Holocene and the preceding deglaciation. Palaeomagnetic analyses reveal that the sediments under study are characterized by low‐coercivity ferrimagnetic minerals (magnetite), mostly in the pseudo‐single domain grain‐size range, and by a strong, stable, well‐defined remanent magnetization (MAD<5°). Age models for these sediment cores were constrained by comparing their palaeomagnetic secular variations (inclination, declination and relative palaeointensity) with previously published and independently dated sedimentary marine records from the study area. The magnetostratigraphical age models were verified byAMSradiocarbon dating tie points, tephrochronology and210Pb‐based sedimentation rate estimate. The analysed cores 01JPC, 03PCand 02PCspanc. 6000, 10 500 and 13 500 cal. aBP, respectively. The estimated sedimentation rates were stable and relatively high since the deglaciation in cores 01JPC(60 cm ka−1) and 03PC(40–70 cm ka−1). Core 02PCshows much lower Holocene sedimentation rates with a strong decrease after the deglaciation from ~60 to 10–20 cm ka−1. Overall, this study illustrates the usefulness of palaeomagnetism to improve the dating of late Quaternary sedimentary records in the Arctic Ocean.

     
    more » « less
  5. Sinkholes develop on carbonate landscapes when caves collapse and can subsequently become lake-like environments if they are flooded by local groundwater. Sediment cores retrieved from sinkholes have yielded high-resolution reconstructions of past environmental change, hydroclimate, and hurricane activity. However, our understanding of the internal sedimentary processes of these systems remains incomplete. Here, we use a multiproxy approach including sedimentology (stratigraphy, coarse-grained particle density, bulk organic matter content), micropaleontology (ostracods), and geochemistry (δ13C and δ2H on n-alkanoic acids) to reconstruct evidence for paleolimnology and regional hydroclimate from a continuous stratigraphic record (Emerald Pond sinkhole) in the northern Bahamas that spans the middle to late Holocene. Basal peat at 8.9 m below modern sea level documents the maximum sea-level position at ~ 8200 cal. yr BP. Subsequent upward vertical migration of the local aquifer caused by regional sea-level rise promoted carbonate-marl deposition from ~ 8300 to 1700 cal. yr BP. A shift in coarse particle deposition and ostracods at 5500 cal. yr BP suggests some environmental change, which may be related to one or multiple internal or external drivers. Sapropel deposition from ~ 1700 to 1300 cal. yr BP indicates a fundamental change in limnology to promote increased organic matter preservation, perhaps related to the regional cooling during the Dark Ages Cold Period. We find δ2H28 values are largely invariant from 7700 to 6150 cal. yr BP suggesting a generally stable hydroclimate (mean − 133‰, 1σ = 5‰). The shift to more depleted values (− 156‰, 1σ = 19‰) at ~ 6000–4800 cal. yr BP may be linked to a weakened (eastern displaced) North Atlantic Subtropical High. Nevertheless, additional local hydroclimate records are needed to better disentangle uncertainties from either internal or external influences on the resultant measurements. 
    more » « less