Subseasonal prediction fills the gap between weather forecasts and seasonal outlooks. There is evidence that predictability on subseasonal timescales comes from a combination of atmosphere, land, and ocean initial conditions. Predictability from the land is often attributed to slowly varying changes in soil moisture and snowpack, while predictability from the ocean is attributed to sources such as the El Niño Southern Oscillation. Here we use a set of subseasonal reforecast experiments with CESM2 to quantify the respective roles of atmosphere, land, and ocean initial conditions on subseasonal prediction skill over land. These reveal that the majority of prediction skill for global surface temperature in weeks 3–4 comes from the atmosphere, while ocean initial conditions become important after week 4, especially in the Tropics. In the CESM2 subseasonal prediction system, the land initial state does not contribute to surface temperature prediction skill in weeks 3–6 and climatological land conditions lead to higher skill, disagreeing with our current understanding. However, land-atmosphere coupling is important in week 1. Subseasonal precipitation prediction skill also comes primarily from the atmospheric initial condition, except for the Tropics, where after week 4 the ocean state is more important.
more » « less- PAR ID:
- 10493992
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- npj Climate and Atmospheric Science
- Volume:
- 7
- Issue:
- 1
- ISSN:
- 2397-3722
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Abstract There is a growing demand for understanding sources of predictability on subseasonal to seasonal (S2S) time scales. Predictability at subseasonal time scales is believed to come from processes varying slower than the atmosphere such as soil moisture, snowpack, sea ice, and ocean heat content. The stratosphere as well as tropospheric modes of variability can also provide predictability at subseasonal time scales. However, the contributions of the above sources to S2S predictability are not well quantified. Here we evaluate the subseasonal prediction skill of the Community Earth System Model, version 1 (CESM1), in the default version of the model as well as a version with the improved representation of stratospheric variability to assess the role of an improved stratosphere on prediction skill. We demonstrate that the subseasonal skill of CESM1 for surface temperature and precipitation is comparable to that of operational models. We find that a better-resolved stratosphere improves stratospheric but not surface prediction skill for weeks 3–4.more » « less
-
Abstract Prediction systems to enable Earth system predictability research on the subseasonal time scale have been developed with the Community Earth System Model, version 2 (CESM2) using two configurations that differ in their atmospheric components. One system uses the Community Atmosphere Model, version 6 (CAM6) with its top near 40 km, referred to as CESM2(CAM6). The other employs the Whole Atmosphere Community Climate Model, version 6 (WACCM6) whose top extends to ∼140 km, and it includes fully interactive tropospheric and stratospheric chemistry [CESM2(WACCM6)]. Both systems are utilized to carry out subseasonal reforecasts for the 1999–2020 period following the Subseasonal Experiment’s (SubX) protocol. Subseasonal prediction skill from both systems is compared to those of the National Oceanic and Atmospheric Administration CFSv2 and European Centre for Medium-Range Weather Forecasts (ECMWF) operational models. CESM2(CAM6) and CESM2(WACCM6) show very similar subseasonal prediction skill of 2-m temperature, precipitation, the Madden–Julian oscillation, and North Atlantic Oscillation to its previous version and to the NOAA CFSv2 model. Overall, skill of CESM2(CAM6) and CESM2(WACCM6) is a little lower than that of the ECMWF system. In addition to typical output provided by subseasonal prediction systems, CESM2 reforecasts provide comprehensive datasets for predictability research of multiple Earth system components, including three-dimensional output for many variables, and output specific to the mesosphere and lower-thermosphere (MLT) region from CESM2(WACCM6). It is shown that sudden stratosphere warming events, and the associated variability in the MLT, can be predicted ∼10 days in advance. Weekly real-time forecasts and reforecasts with CESM2(CAM6) and CESM2(WACCM6) are freely available.
Significance Statement We describe here the design and prediction skill of two subseasonal prediction systems based on two configurations of the Community Earth System Model, version 2 (CESM2): CESM2 with the Community Atmosphere Model, version 6 [CESM2(CAM6)] and CESM 2 with Whole Atmosphere Community Climate Model, version 6 [CESM2(WACCM6)] as its atmospheric component. These two systems provide a foundation for community-model based subseasonal prediction research. The CESM2(WACCM6) system provides a novel capability to explore the predictability of the stratosphere, mesosphere, and lower thermosphere. Both CESM2(CAM6) and CESM2(WACCM6) demonstrate subseasonal surface prediction skill comparable to that of the NOAA CFSv2 model, and a little lower than that of the ECMWF forecasting system. CESM2 reforecasts provide a comprehensive dataset for predictability research of multiple aspects of the Earth system, including the whole atmosphere up to 140 km, land, and sea ice. Weekly real-time forecasts, reforecasts, and models are publicly available.
-
Abstract Studies have indicated exaggerated Maritime Continent (MC) barrier effect in simulations of the Madden–Julian oscillation (MJO), a dominant source of subseasonal predictability in the tropics. This issue has plagued the modeling and operational forecasting communities for decades, while the sensitivity of MC barrier on MJO predictability has not been addressed quantitatively. In this study, perfect-model ensemble forecasts are conducted with an aquaplanet configuration of the Community Earth System Model version 2 (CESM2) in which both basic state and tropical modes of variability are reasonably simulated with a warm pool–like SST distribution. When water-covered terrain mimicking MC landmasses is added to the warm pool–like SST framework, the eastward propagation of the MJO is disturbed by the prescribed MC aqua-mountain. The MJO predictability estimate with the perfect-model experiment is about 6 weeks but reduces to about 4 weeks when the MJO is impeded by the MC aqua-mountain. Given that the recent operational forecasts show an average of 3–4 weeks of MJO prediction skill, we can conclude that improving the MJO propagation crossing the MC could improve the MJO skill to 5–6 weeks, close to the potential predictability found in this study (6 weeks). Therefore, more effort toward understanding and improving the MJO propagation is needed to enhance the MJO and MJO-related forecasts to improve the subseasonal-to-seasonal prediction.
-
Abstract. The potential for multiyear prediction of impactful Earthsystem change remains relatively underexplored compared to shorter(subseasonal to seasonal) and longer (decadal) timescales. In this study, weintroduce a new initialized prediction system using the Community EarthSystem Model version 2 (CESM2) that is specifically designed to probepotential and actual prediction skill at lead times ranging from 1 month outto 2 years. The Seasonal-to-Multiyear Large Ensemble (SMYLE) consists of acollection of 2-year-long hindcast simulations, with four initializations peryear from 1970 to 2019 and an ensemble size of 20. A full suite of output isavailable for exploring near-term predictability of all Earth systemcomponents represented in CESM2. We show that SMYLE skill for ElNiño–Southern Oscillation is competitive with other prominent seasonalprediction systems, with correlations exceeding 0.5 beyond a lead time of 12months. A broad overview of prediction skill reveals varying degrees ofpotential for useful multiyear predictions of seasonal anomalies in theatmosphere, ocean, land, and sea ice. The SMYLE dataset, experimentaldesign, model, initial conditions, and associated analysis tools are allpublicly available, providing a foundation for research on multiyearprediction of environmental change by the wider community.more » « less
-
Abstract Flash droughts are rapidly developing subseasonal climate extreme events that are manifested as suddenly decreased soil moisture, driven by increased evaporative demand and/or sustained precipitation deficits. Over each climate region in the contiguous United States (CONUS), we evaluated the forecast skill of weekly root-zone soil moisture (RZSM), evaporative demand (ET
o ), and relevant flash drought (FD) indices derived from two dynamic models [Goddard Earth Observing System model V2p1 (GEOS-V2p1) and Global Ensemble Forecast System version 12 (GEFSv12)] in the Subseasonal Experiment (SubX) project between years 2000 and 2019 against three reference datasets: Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2), North American Land Data Assimilation System, phase 2 (NLDAS-2), and GEFSv12 reanalysis. The ETo and its forcing variables at lead week 1 have moderate-to-high anomaly correlation coefficient (ACC) skill (∼0.70–0.95) except downwelling shortwave radiation, and by weeks 3–4, predictability was low for all forcing variables (ACC < 0.5). RZSM (0–100 cm) for model GEFSv12 showed high skill at lead week 1 (∼0.7–0.85 ACC) in the High Plains, West, Midwest, and South CONUS regions when evaluated against GEFSv12 reanalysis but lower skill against MERRA-2 and NLDAS-2 and ACC skill are still close to 0.5 for lead weeks 3–4, better than ETo forecasts. GEFSv12 analysis has not been evaluated against in situ observations and has substantial RZSM anomaly differences when compared to NLDAS-2, and our analysis identified GEFSv12 reforecast prediction limit, which can maximally achieve ACC ∼0.6 for RZSM forecasts between lead weeks 3 and 4. Analysis of major FD events reveals that GEFSv12 reforecast inconsistently captured the correct location of atmospheric and RZSM anomalies contributing to FD onset, suggesting the needs for improving the dynamic models’ assimilation and initialization procedures to improve subseasonal FD predictability.Significance Statement Flash droughts are rapidly developing climate extremes which reduce soil moisture through enhanced evaporative demand and precipitation deficits, and these events can have large impacts on the ecosystem and crop health. We evaluated the subseasonal forecast skill of soil moisture and evaporative demand against three reanalysis datasets and found that evaporative demand skill was similar between forecasts and reanalyses while soil moisture skill is dependent on the reference dataset. Skill of evaporative demand decreases rapidly after week 1, while soil moisture skill declines more slowly after week 1. Case studies for the 2012, 2017, and 2019 United States flash droughts identified that forecasts could capture rapid decreases in soil moisture in some regions but not consistently, implying that long-lead forecasts still need improvements before being used in early warning systems. Improvements in flash drought predictability at longer lead times will require less biased initial conditions, better model parameterizations, and improved representations of large-scale teleconnections.