skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Proton Transfer from a Photoacid to a Water Wire: First Principles Simulations and Fast Fluorescence Spectroscopy
Proton transfer reactions are ubiquitous in chemistry, especially in aqueous solutions. We investigate photoinduced proton transfer between the photoacid 8-hydroxypyrene-1,3,6- trisulfonate (HPTS) and water using fast fluorescence spectroscopy and ab initio molecular dynamics simulations. Photoexcitation causes rapid proton release from the HPTS hydroxyl. Previous experiments on HPTS/water described the progress from photoexcitation to proton diffusion using kinetic equations with two time constants. The shortest time constant has been interpreted as protonated and photoexcited HPTS evolving into an “associated” state, where the proton is “shared” between the HPTS hydroxyl and an originally hydrogen bonded water. The longer time constant has been interpreted as indicating evolution to a “solvent separated” state where the shared proton undergoes long distance diffusion. In this work, we refine the previous experimental results using very pure HPTS. We then use excited state ab initio molecular dynamics to elucidate the detailed molecular mechanism of aqueous excited state proton transfer in HPTS. We find that the initial excitation results in rapid rearrangement of water, forming a strong hydrogen bonded network (a “water wire”) around HPTS. HPTS then deprotonates in ≤3 ps, resulting in a proton that migrates back and forth along the wire before localizing on a single water molecule. We find a near linear relationship between the emission wavelength and proton-HPTS distance over the simulated time scale, suggesting that the emission wavelength can be used as a ruler for the proton distance. Our simulations reveal that the “associated” state corresponds to a water wire with a mobile proton and that the diffusion of the proton away from this water wire (to a generalized “solvent separated” state) corresponds to the longest experimental time constant.  more » « less
Award ID(s):
1954392
PAR ID:
10494030
Author(s) / Creator(s):
; ; ; ;
Corporate Creator(s):
Editor(s):
NA
Publisher / Repository:
ACS Publication
Date Published:
Journal Name:
The Journal of Physical Chemistry B
Edition / Version:
1
Volume:
125
Issue:
45
ISSN:
1520-6106
Page Range / eLocation ID:
12539 to 12551
Subject(s) / Keyword(s):
Proton hopping Water wire Photoacid ab initio MD simulations, time correlated single photon counting
Format(s):
Medium: X Other: PDFA
Sponsoring Org:
National Science Foundation
More Like this
  1. Shea; Joan-Emma (Ed.)
    Proton transfer reactions are ubiquitous in chemistry, especially in aqueous solutions. We investigate photo-induced proton transfer between the photoacid 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) and water using fast fluorescence spectroscopy and ab initio molecular dynamics simulations. Photo-excitation causes rapid proton release from the HPTS hydroxyl. Previous experiments on HPTS/water described the progress from photoexcitation to proton diffusion using kinetic equations with two time constants. The shortest time constant has been interpreted as protonated and photoexcited HPTS evolving into an “associated” state, where the proton is “shared” between the HPTS hydroxyl and an originally hydrogen bonded water. The longer time constant has been interpreted as indicating evolution to a “solvent separated” state where the shared proton undergoes long distance diffusion. In this work, we refine the previous experimental results using very pure HPTS. We then use excited state ab initio molecular dynamics to elucidate the detailed molecular mechanism of aqueous excited state proton transfer in HPTS. We find that the initial excitation results in rapid rearrangement of water, forming a strong hydrogen bonded network (a “water wire”) around HPTS. HPTS then deprotonates in ≤3 ps, resulting in a proton that migrates back and forth along the wire before localizing on a single water molecule. We find a near linear relationship between emission wavelength and proton-HPTS distance over the simulations’ time scale, suggesting that emission wavelength can be used as a ruler for proton distance. Our simulations reveal that the “associated” state corresponds to a water wire with a mobile proton and that the diffusion of the proton away from this water wire (to a generalized “solvent-separated” state) corresponds to the longest experimental time constant. 
    more » « less
  2. n-Cyanoindole fluorescent probes hydrogen bonded with one or two water molecules can form cyclic or non-cyclic structures. These structures can lead to excited state proton or hydrogen transfer to the solvent molecules. 
    more » « less
  3. Baird’s rule explains why and when excited-state proton transfer (ESPT) reactions happen in organic compounds. Bifunctional compounds that are [4 n + 2] π-aromatic in the ground state, become [4 n + 2] π-antiaromatic in the first 1 ππ* states, and proton transfer (either inter- or intramolecularly) helps relieve excited-state antiaromaticity. Computed nucleus-independent chemical shifts (NICS) for several ESPT examples (including excited-state intramolecular proton transfers (ESIPT), biprotonic transfers, dynamic catalyzed transfers, and proton relay transfers) document the important role of excited-state antiaromaticity. o- Salicylic acid undergoes ESPT only in the “antiaromatic” S 1 ( 1 ππ*) state, but not in the “aromatic” S 2 ( 1 ππ*) state. Stokes’ shifts of structurally related compounds [e.g., derivatives of 2-(2-hydroxyphenyl)benzoxazole and hydrogen-bonded complexes of 2-aminopyridine with protic substrates] vary depending on the antiaromaticity of the photoinduced tautomers. Remarkably, Baird’s rule predicts the effect of light on hydrogen bond strengths; hydrogen bonds that enhance (and reduce) excited-state antiaromaticity in compounds become weakened (and strengthened) upon photoexcitation. 
    more » « less
  4. The transport of excess protons and hydroxide ions in water underlies numerous important chemical and biological processes. Accurately simulating the associated transport mechanisms ideally requires utilizing ab initio molecular dynamics simulations to model the bond breaking and formation involved in proton transfer and path-integral simulations to model the nuclear quantum effects relevant to light hydrogen atoms. These requirements result in a prohibitive computational cost, especially at the time and length scales needed to converge proton transport properties. Here, we present machine-learned potentials (MLPs) that can model both excess protons and hydroxide ions at the generalized gradient approximation and hybrid density functional theory levels of accuracy and use them to perform multiple nanoseconds of both classical and path-integral proton defect simulations at a fraction of the cost of the corresponding ab initio simulations. We show that the MLPs are able to reproduce ab initio trends and converge properties such as the diffusion coefficients of both excess protons and hydroxide ions. We use our multi-nanosecond simulations, which allow us to monitor large numbers of proton transfer events, to analyze the role of hypercoordination in the transport mechanism of the hydroxide ion and provide further evidence for the asymmetry in diffusion between excess protons and hydroxide ions. 
    more » « less
  5. Proton transport in aqueous systems occurs by making and breaking covalent bonds, a process that classical force fields cannot reproduce. Various attempts have been made to remedy this deficiency, by valence bond theory or instantaneous proton transfers, but the ability of such methods to provide a realistic picture of this fundamental process has not been fully evaluated. Here we compare an ab initio molecular dynamics (AIMD) simulation of an excess proton in water to a simulation of a classical H3O+ in TIP3P water. The energy gap upon instantaneous proton transfer from H3O+ to an acceptor water molecule is much higher in the classical simulation than in the AIMD configurations evaluated with the same classical potential. The origins of this discrepancy are identified by comparing the solvent structures around the excess proton in the two systems. One major structural difference is in the tilt angle of the water molecules that accept an hydrogen bond from H3O+. The lack of lone pairs in TIP3P produces a tilt angle that is too large and generates an unfavorable geometry after instantaneous proton transfer. This problem can be alleviated by the use of TIP5P, which gives a tilt angle much closer to the AIMD result. Another important factor that raises the energy gap is the different optimal distance in water-water vs H3O+-water H-bonds. In AIMD the acceptor is gradually polarized and takes a hydronium-like configuration even before proton transfer actually happens. Ways to remedy some of these problems in classical simulations are discussed. 
    more » « less