Abstract Significant progress in permafrost carbon science made over the past decades include the identification of vast permafrost carbon stocks, the development of new pan‐Arctic permafrost maps, an increase in terrestrial measurement sites for CO2and methane fluxes, and important factors affecting carbon cycling, including vegetation changes, periods of soil freezing and thawing, wildfire, and other disturbance events. Process‐based modeling studies now include key elements of permafrost carbon cycling and advances in statistical modeling and inverse modeling enhance understanding of permafrost region C budgets. By combining existing data syntheses and model outputs, the permafrost region is likely a wetland methane source and small terrestrial ecosystem CO2sink with lower net CO2uptake toward higher latitudes, excluding wildfire emissions. For 2002–2014, the strongest CO2sink was located in western Canada (median: −52 g C m−2 y−1) and smallest sinks in Alaska, Canadian tundra, and Siberian tundra (medians: −5 to −9 g C m−2 y−1). Eurasian regions had the largest median wetland methane fluxes (16–18 g CH4m−2 y−1). Quantifying the regional scale carbon balance remains challenging because of high spatial and temporal variability and relatively low density of observations. More accurate permafrost region carbon fluxes require: (a) the development of better maps characterizing wetlands and dynamics of vegetation and disturbances, including abrupt permafrost thaw; (b) the establishment of new year‐round CO2and methane flux sites in underrepresented areas; and (c) improved models that better represent important permafrost carbon cycle dynamics, including non‐growing season emissions and disturbance effects.
more »
« less
Persistent net release of carbon dioxide and methane from an Alaskan lowland boreal peatland complex
Abstract Permafrost degradation in peatlands is altering vegetation and soil properties and impacting net carbon storage. We studied four adjacent sites in Alaska with varied permafrost regimes, including a black spruce forest on a peat plateau with permafrost, two collapse scar bogs of different ages formed following thermokarst, and a rich fen without permafrost. Measurements included year‐round eddy covariance estimates of net carbon dioxide (CO2), mid‐April to October methane (CH4) emissions, and environmental variables. From 2011 to 2022, annual rainfall was above the historical average, snow water equivalent increased, and snow‐season duration shortened due to later snow return. Seasonally thawed active layer depths also increased. During this period, all ecosystems acted as slight annual sources of CO2(13–59 g C m−2 year−1) and stronger sources of CH4(11–14 g CH4 m−2from ~April to October). The interannual variability of net ecosystem exchange was high, approximately ±100 g C m−2 year−1, or twice what has been previously reported across other boreal sites. Net CO2release was positively related to increased summer rainfall and winter snow water equivalent and later snow return. Controls over CH4emissions were related to increased soil moisture and inundation status. The dominant emitter of carbon was the rich fen, which, in addition to being a source of CO2, was also the largest CH4emitter. These results suggest that the future carbon‐source strength of boreal lowlands in Interior Alaska may be determined by the area occupied by minerotrophic fens, which are expected to become more abundant as permafrost thaw increases hydrologic connectivity. Since our measurements occur within close proximity of each other (≤1 km2), this study also has implications for the spatial scale and data used in benchmarking carbon cycle models and emphasizes the necessity of long‐term measurements to identify carbon cycle process changes in a warming climate.
more »
« less
- PAR ID:
- 10494136
- Publisher / Repository:
- Wiley Online Library
- Date Published:
- Journal Name:
- Global Change Biology
- Volume:
- 30
- Issue:
- 1
- ISSN:
- 1354-1013
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Boreal‐Arctic regions are key stores of organic carbon (C) and play a major role in the greenhouse gas balance of high‐latitude ecosystems. The carbon‐climate (C‐climate) feedback potential of northern high‐latitude ecosystems remains poorly understood due to uncertainty in temperature and precipitation controls on carbon dioxide (CO2) uptake and the decomposition of soil C into CO2and methane (CH4) fluxes. While CH4fluxes account for a smaller component of the C balance, the climatic impact of CH4outweighs CO2(28–34 times larger global warming potential on a 100‐year scale), highlighting the need to jointly resolve the climatic sensitivities of both CO2and CH4. Here, we jointly constrain a terrestrial biosphere model with in situ CO2and CH4flux observations at seven eddy covariance sites using a data‐model integration approach to resolve the integrated environmental controls on land‐atmosphere CO2and CH4exchanges in Alaska. Based on the combined CO2and CH4flux responses to climate variables, we find that 1970‐present climate trends will induce positive C‐climate feedback at all tundra sites, and negative C‐climate feedback at the boreal and shrub fen sites. The positive C‐climate feedback at the tundra sites is predominantly driven by increased CH4emissions while the negative C‐climate feedback at the boreal site is predominantly driven by increased CO2uptake (80% from decreased heterotrophic respiration, and 20% from increased photosynthesis). Our study demonstrates the need for joint observational constraints on CO2and CH4biogeochemical processes—and their associated climatic sensitivities—for resolving the sign and magnitude of high‐latitude ecosystem C‐climate feedback in the coming decades.more » « less
-
Abstract Climate change is exposing coastal landscapes to more flooding, in addition to rapidly rising temperatures. These changes are critical in the Arctic where the effects of sea level rise are exacerbated by the loss of sea ice protecting coasts, subsidence as permafrost thaws, and a projected increase in storms. Such changes will likely alter the land-atmosphere gas exchange of high-latitude coastal ecosystems, but the effects of flooding with warming remain unexplored. In this work we use a field experiment to examine the interacting effects of increased tidal flooding and warming on land-atmosphere CO2and CH4exchange in the coastal Yukon–Kuskokwim Delta, a large sub-Arctic wetland and tundra complex in western Alaska. We inundated dammed plots to simulate two levels of future flooding: low-intensity flooding represented by one day of flooding per summer-month (June, July and August), and high-intensity flooding represented by three-consecutive days of flooding per summer-month, crossed with a warming treatment of 1.4 °C. We found that both flooding and warming influenced greenhouse gas (GHG) exchange. Low-intensity flooding reduced net CO2uptake by 20% (0.78µmol m−2s−1) regardless of temperature, and marginally increased CH4emissions 0.83 nmol m−2s−1(33%) under ambient temperature, while decreasing CH4emissions by −1.96 nmol m−2s−1(40%) under warming. In contrast, high-intensity flooding restored net CO2uptake to control levels due to enhanced primary productivity under both temperature treatments. High-intensity flooding decreased CH4emissions under ambient temperature by 0.76 nmol m−2s−1(30%), but greatly increased emissions under warming by 4.68 nmol m−2s−1(265%), presumably driven by increased plant-mediated CH4transport. These findings reveal that GHG exchange responds rapidly and non-linearly to intensifying flooding, and highlight the importance of short-term flooding dynamics and warming in shaping future carbon cycling in this Arctic coastal wetland.more » « less
-
Abstract The northern permafrost region has been projected to shift from a net sink to a net source of carbon under global warming. However, estimates of the contemporary net greenhouse gas (GHG) balance and budgets of the permafrost region remain highly uncertain. Here, we construct the first comprehensive bottom‐up budgets of CO2, CH4, and N2O across the terrestrial permafrost region using databases of more than 1000 in situ flux measurements and a land cover‐based ecosystem flux upscaling approach for the period 2000–2020. Estimates indicate that the permafrost region emitted a mean annual flux of 12 (−606, 661) Tg CO2–C yr−1, 38 (22, 53) Tg CH4–C yr−1, and 0.67 (0.07, 1.3) Tg N2O–N yr−1to the atmosphere throughout the period. Thus, the region was a net source of CH4and N2O, while the CO2balance was near neutral within its large uncertainties. Undisturbed terrestrial ecosystems had a CO2sink of −340 (−836, 156) Tg CO2–C yr−1. Vertical emissions from fire disturbances and inland waters largely offset the sink in vegetated ecosystems. When including lateral fluxes for a complete GHG budget, the permafrost region was a net source of C and N, releasing 144 (−506, 826) Tg C yr−1and 3 (2, 5) Tg N yr−1. Large uncertainty ranges in these estimates point to a need for further expansion of monitoring networks, continued data synthesis efforts, and better integration of field observations, remote sensing data, and ecosystem models to constrain the contemporary net GHG budgets of the permafrost region and track their future trajectory.more » « less
-
Abstract Agricultural soils play a dual role in regulating the Earth's climate by releasing or sequestering carbon dioxide (CO2) in soil organic carbon (SOC) and emitting non‐CO2greenhouse gases (GHGs) such as nitrous oxide (N2O) and methane (CH4). To understand how agricultural soils can play a role in climate solutions requires a comprehensive assessment of net soil GHG balance (i.e., sum of SOC‐sequestered CO2and non‐CO2GHG emissions) and the underlying controls. Herein, we used a model‐data integration approach to understand and quantify how natural and anthropogenic factors have affected the magnitude and spatiotemporal variations of the net soil GHG balance in U.S. croplands during 1960–2018. Specifically, we used the dynamic land ecosystem model for regional simulations and used field observations of SOC sequestration rates and N2O and CH4emissions to calibrate, validate, and corroborate model simulations. Results show that U.S. agricultural soils sequestered Tg CO2‐C year−1in SOC (at a depth of 3.5 m) during 1960–2018 and emitted Tg N2O‐N year−1and Tg CH4‐C year−1, respectively. Based on the GWP100 metric (global warming potential on a 100‐year time horizon), the estimated national net GHG emission rate from agricultural soils was Tg CO2‐eq year−1, with the largest contribution from N2O emissions. The sequestered SOC offset ~28% of the climate‐warming effects resulting from non‐CO2GHG emissions, and this offsetting effect increased over time. Increased nitrogen fertilizer use was the dominant factor contributing to the increase in net GHG emissions during 1960–2018, explaining ~47% of total changes. In contrast, reduced cropland area, the adoption of agricultural conservation practices (e.g., reduced tillage), and rising atmospheric CO2levels attenuated net GHG emissions from U.S. croplands. Improving management practices to mitigate N2O emissions represents the biggest opportunity for achieving net‐zero emissions in U.S. croplands. Our study highlights the importance of concurrently quantifying SOC‐sequestered CO2and non‐CO2GHG emissions for developing effective agricultural climate change mitigation measures.more » « less
An official website of the United States government

