skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Smooth Nash Equilibria: Algorithms and Complexity
A fundamental shortcoming of the concept of Nash equilibrium is its computational intractability: approximating Nash equilibria in normal-form games is PPAD-hard. In this paper, inspired by the ideas of smoothed analysis, we introduce a relaxed variant of Nash equilibrium called σ-smooth Nash equilibrium, for a {smoothness parameter} σ. In a σ-smooth Nash equilibrium, players only need to achieve utility at least as high as their best deviation to a σ-smooth strategy, which is a distribution that does not put too much mass (as parametrized by σ) on any fixed action. We distinguish two variants of σ-smooth Nash equilibria: strong σ-smooth Nash equilibria, in which players are required to play σ-smooth strategies under equilibrium play, and weak σ-smooth Nash equilibria, where there is no such requirement. We show that both weak and strong σ-smooth Nash equilibria have superior computational properties to Nash equilibria: when σ as well as an approximation parameter ϵ and the number of players are all constants, there is a {constant-time} randomized algorithm to find a weak ϵ-approximate σ-smooth Nash equilibrium in normal-form games. In the same parameter regime, there is a polynomial-time deterministic algorithm to find a strong ϵ-approximate σ-smooth Nash equilibrium in a normal-form game. These results stand in contrast to the optimal algorithm for computing ϵ-approximate Nash equilibria, which cannot run in faster than quasipolynomial-time, subject to complexity-theoretic assumptions. We complement our upper bounds by showing that when either σ or ϵ is an inverse polynomial, finding a weak ϵ-approximate σ-smooth Nash equilibria becomes computationally intractable. Our results are the first to propose a variant of Nash equilibrium which is computationally tractable, allows players to act independently, and which, as we discuss, is justified by an extensive line of work on individual choice behavior in the economics literature.  more » « less
Award ID(s):
2145898
PAR ID:
10494283
Author(s) / Creator(s):
; ; ;
Editor(s):
Guruswami, Venkatesan
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Journal Name:
Leibniz International Proceedings in Informatics (LIPIcs):15th Innovations in Theoretical Computer Science Conference (ITCS 2024)
Subject(s) / Keyword(s):
Nash equilibrium smoothed analysis PPAD Theory of computation → Exact and approximate computation of equilibria Theory of computation → Algorithmic game theory
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Unlike normal-form games, where correlated equilibria have been studied for more than 45 years, extensive-form correlation is still generally not well understood. Part of the reason for this gap is that the sequential nature of extensive-form games allows for a richness of behaviors and incentives that are not possible in normal-form settings. This richness translates to a significantly different complexity landscape surrounding extensive-form correlated equilibria. As of today, it is known that finding an optimal extensive-form correlated equilibrium (EFCE), extensive-form coarse correlated equilibrium (EFCCE), or normal-form coarse correlated equilibrium (NFCCE) in a two-player extensive-form game is computationally tractable when the game does not include chance moves, and intractable when the game involves chance moves. In this paper we significantly refine this complexity threshold by showing that, in two-player games, an optimal correlated equilibrium can be computed in polynomial time, provided that a certain condition is satisfied. We show that the condition holds, for example, when all chance moves are public, that is, both players observe all chance moves. This implies that an optimal EFCE, EFCCE and NFCCE can be computed in polynomial time in the game size in two-player games with public chance moves, providing the biggest positive complexity result surrounding extensive-form correlation in more than a decade. 
    more » « less
  2. null (Ed.)
    Unlike normal-form games, where correlated equilibria have been studied for more than 45 years, extensive-form correlation is still generally not well understood. Part of the reason for this gap is that the sequential nature of extensive-form games allows for a richness of behaviors and incentives that are not possible in normal-form settings. This richness translates to a significantly different complexity landscape surrounding extensive-form correlated equilibria. As of today, it is known that finding an optimal extensive-form correlated equilibrium (EFCE), extensive-form coarse correlated equilibrium (EFCCE), or normal-form coarse correlated equilibrium (NFCCE) in a two-player extensive-form game is computationally tractable when the game does not include chance moves, and intractable when the game involves chance moves. In this paper we significantly refine this complexity threshold by showing that, in two-player games, an optimal correlated equilibrium can be computed in polynomial time, provided that a certain condition is satisfied. We show that the condition holds, for example, when all chance moves are public, that is, both players observe all chance moves. This implies that an optimal EFCE, EFCCE and NFCCE can be computed in polynomial time in the game size in two-player games with public chance moves, providing the biggest positive complexity result surrounding extensive-form correlation in more than a decade. 
    more » « less
  3. The theory of mean field games is a tool to understand noncooperative dynamic stochastic games with a large number of players. Much of the theory has evolved under conditions ensuring uniqueness of the mean field game Nash equilibrium. However, in some situations, typically involving symmetry breaking, non-uniqueness of solutions is an essential feature. To investigate the nature of non-unique solutions, this paper focuses on the technically simple setting where players have one of two states, with continuous time dynamics, and the game is symmetric in the players, and players are restricted to using Markov strategies. All the mean field game Nash equilibria are identified for a symmetric follow the crowd game. Such equilibria correspond to symmetric $\epsilon$-Nash Markov equilibria for $N$ players with $\epsilon$ converging to zero as $N$ goes to infinity. In contrast to the mean field game, there is a unique Nash equilibrium for finite $N.$ It is shown that fluid limits arising from the Nash equilibria for finite $N$ as $N$ goes to infinity are mean field game Nash equilibria, and evidence is given supporting the conjecture that such limits, among all mean field game Nash equilibria, are the ones that are stable fixed points of the mean field best response mapping. 
    more » « less
  4. We consider computational games, sequences of games G = (G1,G2,...) where, for all n, Gn has the same set of players. Computational games arise in electronic money systems such as Bitcoin, in cryptographic protocols, and in the study of generative adversarial networks in machine learning. Assuming that one-way functions exist, we prove that there is 2-player zero-sum computational game G such that, for all n, the size of the action space in Gn is polynomial in n and the utility function in Gn is computable in time polynomial in n, and yet there is no ε-Nash equilibrium if players are restricted to using strategies computable by polynomial-time Turing machines, where we use a notion of Nash equilibrium that is tailored to computational games. We also show that an ε-Nash equilibrium may not exist if players are constrained to perform at most T computational steps in each of the games in the sequence. On the other hand, we show that if players can use arbitrary Turing machines to compute their strategies, then every computational game has an ε-Nash equilibrium. These results may shed light on competitive settings where the availability of more running time or faster algorithms can lead to a “computational arms race”, precluding the existence of equilibrium. They also point to inherent limitations of concepts such as “best response” and Nash equilibrium in games with resource-bounded players. 
    more » « less
  5. null (Ed.)
    A two-player finite game is represented by two payoff matrices (A, B), one for each player. Imitation games are a subclass of two-player games in which B is the identity matrix, implying that the second player gets a positive payoff only if she "imitates" the first. Given that the problem of computing a Nash equilibrium (NE) is known to be provably hard, even to approximate, we ask if it is any easier for imitation games. We show that much like the general case, for any c > 0, computing a 1 over n^c -approximate NE of imitation games remains PPAD-hard, where n is the number of moves available to the players. On the other hand, we design a polynomial-time algorithm to find ε-approximate NE for any given constant ε > 0 (PTAS). The former result also rules out the smooth complexity being in P, unless PPAD ⊂ RP. 
    more » « less