skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 15 until 2:00 AM ET on Saturday, November 16 due to maintenance. We apologize for the inconvenience.


Title: Recovering Lost Light: Discovery of Supernova Remnants with Integral Field Spectroscopy
Abstract

We present results from a systematic search for broad (≥ 400 km s−1) Hαemission in integral field spectroscopy data cubes of ∼1200 nearby galaxies obtained with PMAS and MUSE. We found 19 unique regions that pass our quality cuts, four of which match the locations of previously discovered supernovae (SNe): one Type IIP and three Type IIn, including the well-known SN 2005ip. We suggest that these objects are young Supernova remnants (SNRs), with bright and broad Hαemission powered by the interaction between the SN ejecta and dense circumstellar material. The stellar ages measured at the locations of these SNR candidates are systematically lower by about 0.5 dex than those measured at the locations of core-collapse (CC) SNe, implying that their progenitors might be shorter lived and therefore more massive than a typical CCSN progenitor. The methods laid out in this work open a new window into the study of nearby SNe with integral field spectroscopy.

 
more » « less
NSF-PAR ID:
10494365
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
963
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 125
Size(s):
Article No. 125
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present photometric and spectroscopic observations of the nearby (D≈ 28 Mpc) interacting supernova (SN) 2019esa, discovered within hours of explosion and serendipitously observed by the Transiting Exoplanet Survey Satellite (TESS). Early, high-cadence light curves from both TESS and the DLT40 survey tightly constrain the time of explosion, and show a 30 day rise to maximum light followed by a near-constant linear decline in luminosity. Optical spectroscopy over the first 40 days revealed a reddened object with narrow Balmer emission lines seen in Type IIn SNe. The slow rise to maximum in the optical light curve combined with the lack of broad Hαemission suggest the presence of very optically thick and close circumstellar material (CSM) that quickly decelerated the SN ejecta. This CSM was likely created from a massive star progenitor with anṀ∼ 0.2Myr−1lost in a previous eruptive episode 3–4 yr before eruption, similar to giant eruptions of luminous blue variable stars. At late times, strong intermediate-width Caii, Fei, and Feiilines are seen in the optical spectra, identical to those seen in the superluminous interacting SN 2006gy. The strong CSM interaction masks the underlying explosion mechanism in SN 2019esa, but the combination of the luminosity, strength of the Hαlines, and mass-loss rate of the progenitor seem to be inconsistent with a Type Ia CSM model and instead point to a core-collapse origin.

     
    more » « less
  2. Abstract

    We present a search for extragalactic fast blue optical transients (FBOTs) during Phase I of the Zwicky Transient Facility (ZTF). We identify 38 candidates with durations above half-maximum light 1 day <t1/2< 12 days, of which 28 have blue (gr≲ −0.2 mag) colors at peak light. Of the 38 transients (28 FBOTs), 19 (13) can be spectroscopically classified as core-collapse supernovae (SNe): 11 (8) H- or He-rich (Type II/IIb/Ib) SNe, 6 (4) interacting (Type IIn/Ibn) SNe, and 2 (1) H&He-poor (Type Ic/Ic-BL) SNe. Two FBOTs (published previously) had predominantly featureless spectra and luminous radio emission: AT2018lug (The Koala) and AT2020xnd (The Camel). Seven (five) did not have a definitive classification: AT 2020bdh showed tentative broad Hαin emission, and AT 2020bot showed unidentified broad features and was 10 kpc offset from the center of an early-type galaxy. Ten (eight) have no spectroscopic observations or redshift measurements. We present multiwavelength (radio, millimeter, and/or X-ray) observations for five FBOTs (three Type Ibn, one Type IIn/Ibn, one Type IIb). Additionally, we search radio-survey (VLA and ASKAP) data to set limits on the presence of radio emission for 24 of the transients. All X-ray and radio observations resulted in nondetections; we rule out AT2018cow-like X-ray and radio behavior for five FBOTs and more luminous emission (such as that seen in the Camel) for four additional FBOTs. We conclude that exotic transients similar to AT2018cow, the Koala, and the Camel represent a rare subset of FBOTs and use ZTF’s SN classification experiments to measure the rate to be at most 0.1% of the local core-collapse SN rate.

     
    more » « less
  3. Abstract

    We present photometric and spectroscopic observations of SN 2020bio, a double-peaked Type IIb supernova (SN) discovered within a day of explosion, primarily obtained by Las Cumbres Observatory and Swift. SN 2020bio displays a rapid and long-lasting initial decline throughout the first week of its light curve, similarly to other well-studied Type IIb SNe. This early-time emission is thought to originate from the cooling of the extended outer hydrogen-rich (H-rich) envelope of the progenitor star that is shock heated by the SN explosion. We compare SN 2020bio to a sample of other double-peaked Type IIb SNe in order to investigate its progenitor properties. Analytical model fits to the early-time emission give progenitor radius (≈100–1500R) and H-rich envelope mass (≈0.01–0.5M) estimates that are consistent with other Type IIb SNe. However, SN 2020bio displays several peculiarities, including (1) weak H spectral features indicating a greater amount of mass loss than other Type IIb progenitors; (2) an underluminous secondary light-curve peak that implies a small amount of synthesized56Ni (MNi≈0.02M); and (3) low-luminosity nebular [Oi] and interaction-powered nebular features. These observations are more consistent with a lower-mass progenitor (MZAMS≈ 12M) that was stripped of most of its H-rich envelope before exploding. This study adds to the growing diversity in the observed properties of Type IIb SNe and their progenitors.

     
    more » « less
  4. Abstract

    SN 2014C was originally classified as a Type Ib supernova, but at phaseϕ= 127 days, post-explosion strong Hαemission was observed. SN 2014C has since been observed in radio, infrared, optical and X-ray bands. Here we present new optical spectroscopic and photometric data spanningϕ= 947–2494 days post-explosion. We address the evolution of the broadened Hαemission line, as well as broad [Oiii] emission and other lines. We also conduct a parallel analysis of all publicly available multiwavelength data. From our spectra, we find a nearly constant HαFWHM velocity width of ∼2000 km s−1that is significantly lower than that of other broadened atomic transitions (∼3000–7000 km s−1) present in our spectra ([Oi]λ6300; [Oiii]λλ4959, 5007; Heiλ7065; [Caii]λλ7291, 7324). The late radio data demand a fast forward shock (∼10,000 km s−1atϕ= 1700 days) in rarified matter that contrasts with the modest velocity of the Hα. We propose that the infrared flux originates from a toroidal-like structure of hydrogen surrounding the progenitor system, while later emission at other wavelengths (radio, X-ray) likely originates predominantly from the reverse shock in the ejecta and the forward shock in the quasi-spherical progenitor He-wind. We propose that the Hαemission arises in the boundary layer between the ejecta and torus. We also consider the possible roles of a pulsar and a binary companion.

     
    more » « less
  5. Abstract

    Among the supernovae (SNe) that show strong interaction with a circumstellar medium (CSM), there is a rare subclass of Type Ia supernovae, SNe Ia-CSM, which show strong narrow hydrogen emission lines much like SNe IIn but on top of a diluted Type Ia spectrum. The only previous systematic study of this class identified 16 SNe Ia-CSM, eight historic and eight from the Palomar Transient Factory (PTF). Now using the successor survey to PTF, the Zwicky Transient Facility (ZTF), we have classified 12 additional SNe Ia-CSM through the systematic Bright Transient Survey (BTS). Consistent with previous studies, we find these SNe to have slowly evolving optical light curves with peak absolute magnitudes between −19.1 and −21, spectra having weak Hβand large Balmer decrements of ∼7. Out of the 10 SNe from our sample observed by NEOWISE, nine have 3σdetections, with some SNe showing a reduction in the red wing of Hα, indicative of newly formed dust. We do not find our SN Ia-CSM sample to have a significantly different distribution of equivalent widths of Heiλ5876 than SNe IIn as observed in Silverman et al. The hosts tend to be late-type galaxies with recent star formation. We derive a rate estimate of2921+27Gpc−3yr−1for SNe Ia-CSM, which is ∼0.02%–0.2% of the SN Ia rate. We also identify six ambiguous SNe IIn/Ia-CSM in the BTS sample and including them gives an upper limit rate of 0.07%–0.8%. This work nearly doubles the sample of well-studied Ia-CSM objects in Silverman et al., increasing the total number to 28.

     
    more » « less