Modern autonomous vehicles are increasingly infused with sensors, electronics, and software software. One consequence is that they are getting increasingly susceptible to cyber-attacks. However, awareness of cybersecurity challenges for automotive systems remains low. In this paper, we consider the problem of developing a virtual reality (VR) infrastructure that can enable users who are not necessarily experts in automotive security to explore vulnerabilities arising from compromised ranging sensors. A key requirement for such platforms is to develop natural, intuitive scenarios that enable the user to experience security challenges and impact. We discuss the challenges in developing such scenarios, and develop a solution that enables exploration of jamming and spoong attacks. Our solution is integrated into a VR platform for automotive se- curity exploration called IVE (Immersive Virtual Environment). It combines realistic driving with a rst-person view, user interaction, and sound eects to provide all the benets of a real-life simulation without the consequences.
more »
« less
Poster: Efficient Exploration of Automotive Ranging Sensor Attacks
Security is a critical challenge in emergent autonomous vehicles. However, the security challenges in automotive systems are not widely understood even in the cybersecurity community. To address this problem, we develop an adaptable exploration platform for automotive security. This platform enables users to gain hands-on experience and insights into security vulnerabilities. We discuss specic challenges and prerequisites involved in designing such an exploration tool. We demonstrate the platform’s capabilities by exploring automotive ranging sensor attacks.
more »
« less
- Award ID(s):
- 2150136
- PAR ID:
- 10494430
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- MobiHoc '23: Proceedings of the Twenty-fourth International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing
- ISBN:
- 9781450399265
- Page Range / eLocation ID:
- 589 to 591
- Format(s):
- Medium: X
- Location:
- Washington DC USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A modern automobile system is a safety-critical distributed embedded system that incorporates more than a hundred Electronic Control Units, a wide range of sensors, and actuators, all connected with several in-vehicle networks. Obviously, integration of these heterogeneous components can lead to subtle errors that can be possibly exploited by malicious entities in the field, resulting in catastrophic consequences. We develop a prototyping platform to enable the functional safety and security exploration of automotive systems. The platform realizes a unique, extensible virtualization environment for the exploration of vehicular systems. The platform includes a CAN simulator that mimics the vehicular CAN bus to interact with various ECUs, together with sensory and actuation capabilities. We show how to explore these capabilities in the safety and security exploration through the analysis of a representative vehicular use case interaction.more » « less
-
null (Ed.)We develop a virtual prototyping infrastructure for modeling and simulation of automotive systems. We focus on exercising and exploring use cases involving system-level coordination of vehicular electronics, sensors, and software. In current practice, such use cases can only be explored late in the design when all the relevant hardware components are available. Any design change, e.g., for optimization or security or even functional errors found during the exploration, incurs prohibitive cost at that stage. Our solution is a flexible, configurable prototyping platform that enables the user to seamlessly add new system-level use cases. Unlike other related prototyping environments, the focus of our platform is on communication and coordination among different components, not the computation of individual Electronic Control Units. We report on the use of the platform for implementing several realistic usage scenarios on automotive platforms and exploring the effects of their interaction. In particular, we show how to use the platform to develop real-time in-vehicle communication optimizers for different optimization targets.more » « less
-
A critical requirement for robust, optimized, and secure design of vehicular systems is the ability to do system-level exploration, i.e., comprehend the interactions involved among ECUs, sensors, and communication interfaces in realizing systemlevel use cases and the impact of various design choices on these interactions. This must be done early in the system design to enable the designer to make optimal design choices without requiring a cost-prohibitive design overhaul. In this paper, we develop a virtual prototyping environment for the modeling and simulation of vehicular systems. Our solution, VIVE, is modular and configurable, allowing the user to conveniently introduce new system-level use cases. Unlike other related simulation environments, our platform emphasizes coordination and communication among various vehicular components and just the abstraction of the necessary computation of each electronic control unit. We discuss the ability of VIVE to explore the interactions between a number of realistic use cases in the automotive domain. We demonstrate the utility of the platform, in particular, to create real-time in-vehicle communication optimizers for various optimization targets. We also show how to use such a prototyping environment to explore vehicular security compromises. Furthermore, we showcase the experimental integration and validation of the platform with a hardware setup in a real-time scenario.more » « less
-
As in-vehicle communication becomes more complex, the automotive community is exploring various architectural options such as centralized and zonal architectures for their numerous benefits. Common characteristics of these architectures include the need for high-bandwidth communication and security, which have been elusive with standard automotive architectures. Further, as automotive communication technologies evolve, it is also likely that multiple link-layer technologies such as CAN and Automotive Ethernet will co-exist. These alternative architectures promise to integrate these diverse sets of technologies. However, architectures that allow such co-existence have not been adequately explored. In this work we explore a new network architecture called Named Data Networking (NDN) to achieve multiple goals: provide a foundational security infrastructure and bridge different link layer protocols such as CAN, LIN, and automotive Ethernet into a unified communication system. We have created a proof-of-concept bench-top testbed using CAN HATS and Raspberry PIs that replay real traffic over CAN and Ethernet to demonstrate how NDN can provide a secure, high-speed bridge between different automotive link layers. We also show how NDN can support communication between centralized or zonal high-power compute components. Security is achieved through digitally signing all Data packets between these components, preventing unauthorized ECUs from injecting arbitrary data into the network. We also demonstrate NDN's ability to prevent DoS and replay attacks between different network segments connected through NDN.more » « less
An official website of the United States government

