skip to main content


This content will become publicly available on March 6, 2025

Title: Rapid depletion of target proteins in plants by an inducible protein degradation system
Abstract

Inducible protein knockdowns are excellent tools to test the function of essential proteins in short time scales and to capture the role of proteins in dynamic events. Current approaches destroy or sequester proteins by exploiting plant biological mechanisms such as the activity of photoreceptors for optogenetics or auxin-mediated ubiquitination in auxin degrons. It follows that these are not applicable for plants as light and auxin are strong signals for plant cells. We describe here an inducible protein degradation system in plants named E3-DART for E3-targeted Degradation of Plant Proteins. The E3-DART system is based on the specific and well-characterized interaction between the Salmonella secreted protein H1 (SspH1) and its human target protein kinase N1 (PKN1). This system harnesses the E3 catalytic activity of SspH1 and the SspH1-binding activity of the Homology Region 1b (HR1b) domain from PKN1. Using Nicotiana benthamiana and Arabidopsis (Arabidopsis thaliana), we show that a chimeric protein containing the Leucine-Rich Repeat (LRR) and novel E3 ligase (NEL) domains of SspH1 efficiently targets protein fusions of varying sizes containing HR1b for degradation. Target protein degradation was induced by transcriptional control of the chimeric E3 ligase using a glucocorticoid transactivation system and target protein depletion was detected as early as 3 h after induction. This system could be used to study the loss of any plant protein with high temporal resolution and may become an important tool in plant cell biology.

 
more » « less
Award ID(s):
1909923
NSF-PAR ID:
10494575
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press on behalf of American Society of Plant Biologists.
Date Published:
Journal Name:
The Plant Cell
ISSN:
1040-4651
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ethylene influences plant growth, development, and stress responses via crosstalk with other phytohormones; however, the underlying molecular mechanisms are still unclear. Here, we describe a mechanistic link between the brassinosteroid (BR) and ethylene biosynthesis, which regulates cellular protein homeostasis and stress responses. We demonstrate that as a scaffold, 1-aminocyclopropane-1-carboxylic acid (ACC) synthases (ACS), a rate-limiting enzyme in ethylene biosynthesis, promote the interaction between Seven-in-Absentia of Arabidopsis (SINAT), a RING-domain containing E3 ligase involved in stress response, and ETHYLENE OVERPRODUCER 1 (ETO1) and ETO1-like (EOL) proteins, the E3 ligase adaptors that target a subset of ACS isoforms. Each E3 ligase promotes the degradation of the other, and this reciprocally antagonistic interaction affects the protein stability of ACS. Furthermore, 14–3-3, a phosphoprotein-binding protein, interacts with SINAT in a BR-dependent manner, thus activating reciprocal degradation. Disrupted reciprocal degradation between the E3 ligases compromises the survival of plants in carbon-deficient conditions. Our study reveals a mechanism by which plants respond to stress by modulating the homeostasis of ACS and its cognate E3 ligases. 
    more » « less
  2. Abstract

    Numerous methods have been developed in model systems to deplete or inactivate proteins to elucidate their functional roles. InCaenorhabditis elegans, a common method for protein depletion is RNA interference (RNAi), in which mRNA is targeted for degradation.C. elegansis also a powerful genetic organism, amenable to large‐scale genetic screens and CRISPR‐mediated genome editing. However, these approaches largely lead to constitutive inhibition, which can make it difficult to study proteins essential for development or to dissect dynamic cellular processes. Thus, there have been recent efforts to develop methods to rapidly inactivate or deplete proteins to overcome these barriers. One such method that is proving to be exceptionally powerful is auxin‐inducible degradation. In order to apply this approach inC. elegans, a 44–amino acid degron tag is added to the protein of interest, and theArabidopsisubiquitin ligase TIR1 is expressed in target tissues. When the plant hormone auxin is added, it mediates an interaction between TIR1 and the degron‐tagged protein of interest, which triggers ubiquitination of the protein and its rapid degradation via the proteasome. Here, we have outlined multiple methods for inducing auxin‐mediated depletion of target proteins inC. elegans, highlighting the versatility and power of this method. © 2021 Wiley Periodicals LLC.

    This article was corrected on 19 July 2022. See the end of the full text for details.

    Basic Protocol 1: Long‐term auxin‐mediated depletion on plates

    Support Protocol: Preparation of NGM and NGM‐auxin plates

    Basic Protocol 2: Rapid auxin‐mediated depletion via soaking

    Basic Protocol 3: Acute auxin‐mediated depletion in isolated embryos

    Basic Protocol 4: Assessing auxin‐mediated depletion

     
    more » « less
  3. Protein degradation through the Ubiquitin (Ub)-26S Proteasome System (UPS) is a major gene expression regulatory pathway in plants. In this pathway, the 76-amino acid Ub proteins are covalently linked onto a large array of UPS substrates with the help of three enzymes (E1 activating, E2 conjugating, and E3 ligating enzymes) and direct them for turnover in the 26S proteasome complex. The S-phase Kinase-associated Protein 1 (Skp1), CUL1, F-box (FBX) protein (SCF) complexes have been identified as the largest E3 ligase group in plants due to the dramatic number expansion of the FBX genes in plant genomes. Since it is the FBX proteins that recognize and determine the specificity of SCF substrates, much effort has been done to characterize their genomic, physiological, and biochemical roles in the past two decades of functional genomic studies. However, the sheer size and high sequence diversity of the FBX gene family demands new approaches to uncover unknown functions. In this work, we first identified 82 known FBX members that have been functionally characterized up to date in Arabidopsis thaliana . Through comparing the genomic structure, evolutionary selection, expression patterns, domain compositions, and functional activities between known and unknown FBX gene members, we developed a neural network machine learning approach to predict whether an unknown FBX member is likely functionally active in Arabidopsis, thereby facilitating its future functional characterization. 
    more » « less
  4. Abstract

    The auxin-inducible degradation system has been widely adopted in the Caenorhabditis elegans research community for its ability to empirically control the spatiotemporal expression of target proteins. This system can efficiently degrade auxin-inducible degron (AID)-tagged proteins via the expression of a ligand-activatable AtTIR1 protein derived from A. thaliana that adapts target proteins to the endogenous C. elegans proteasome. While broad expression of AtTIR1 using strong, ubiquitous promoters can lead to rapid degradation of AID-tagged proteins, cell type-specific expression of AtTIR1 using spatially restricted promoters often results in less efficient target protein degradation. To circumvent this limitation, we have developed an FLP/FRT3-based system that functions to reanimate a dormant, high-powered promoter that can drive sufficient AtTIR1 expression in a cell type-specific manner. We benchmark the utility of this system by generating a number of tissue-specific FLP-ON::TIR1 drivers to reveal genetically separable cell type-specific phenotypes for several target proteins. We also demonstrate that the FLP-ON::TIR1 system is compatible with enhanced degron epitopes. Finally, we provide an expandable toolkit utilizing the basic FLP-ON::TIR1 system that can be adapted to drive optimized AtTIR1 expression in any tissue or cell type of interest.

     
    more » « less
  5. Abstract

    Auxin critically regulates plant growth and development. Auxin-driven transcriptional responses are mediated through the AUXIN RESPONSE FACTOR (ARF) family of transcription factors. ARF protein condensation attenuates ARF activity, resulting in dramatic shifts in the auxin transcriptional landscape. Here, we perform a forward genetics screen for ARF hypercondensation, identifying an F-box protein, which we named AUXIN RESPONSE FACTOR F-BOX1 (AFF1). Functional characterization of SCFAFF1revealed that this E3 ubiquitin ligase directly interacts with ARF19 and ARF7 to regulate their accumulation, condensation, and nucleo-cytoplasmic partitioning. Mutants defective inAFF1display attenuated auxin responsiveness, and developmental defects, suggesting that SCFAFF1-mediated regulation of ARF protein drives aspects of auxin response and plant development.

     
    more » « less