Abstract The geroscience hypothesis suggests that addressing the fundamental mechanisms driving aging biology will prevent or mitigate the onset of multiple chronic diseases, for which the largest risk factor is advanced age. Research that investigates the root causes of aging is therefore of critical importance given the rising healthcare burden attributable to age-related diseases. The third annual Midwest Aging Consortium symposium was convened as a showcase of such research performed by investigators from institutions across the Midwestern United States. This report summarizes the work presented during a virtual conference across topics in aging biology, including immune function in the lung—particularly timely given the Corona Virus Immune Disease-2019 pandemic—along with the role of metabolism and nutrient-regulated pathways in cellular function with age, the influence of senescence on stem cell function and inflammation, and our evolving understanding of the mechanisms underlying observation of sex dimorphism in aging-related outcomes. The symposium focused on early-stage and emerging investigators, while including keynote presentations from leaders in the biology of aging field, highlighting the diversity and strength of aging research in the Midwest.
more »
« less
Sex and Biology: Broader Impacts Beyond the Binary
Synopsis What are the implications of misunderstanding sex as a binary, and why is it essential for scientists to incorporate a more expansive view of biological sex in our teaching and research? This roundtable will include many of our symposium speakers, including biologists and intersex advocates, to discuss these topics and visibilize the link between ongoing reification of dyadic sex within scientific communities and the social, political, and medical oppression faced by queer, transgender, and especially intersex communities. As with the symposium as a whole, this conversation is designed to bring together empirical research and implementation of equity, inclusion, and justice principles, which are often siloed into separate rooms and conversations at academic conferences. Given the local and national attacks on the rights of intersex individuals and access to medical care and bodily autonomy, this interdisciplinary discussion is both timely and urgent.
more »
« less
- PAR ID:
- 10494597
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Integrative And Comparative Biology
- Volume:
- 63
- Issue:
- 4
- ISSN:
- 1540-7063
- Page Range / eLocation ID:
- 960 to 967
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Sex‐specific trait expression represents a striking dimension of morphological variation within and across species. The mechanisms instructing sex‐specific organ development have been well studied in a small number of insect model systems, suggesting striking conservation in some parts of the somatic sex determination pathway while hinting at possible evolutionary lability in others. However, further resolution of this phenomenon necessitates additional taxon sampling, particularly in groups in which sexual dimorphisms have undergone significant elaboration and diversification. Here, we functionally investigate the somatic sex determination pathway in the gazelle dung beetleDigitonthophagus gazella, an emerging model system in the study of the development and evolution of sexual dimorphisms. We find that RNA interference (RNAi) targetingtransformer (tra)caused chromosomal females to develop morphological traits largely indistinguishable from those normally only observed in males, and thattraRNAiis sufficient to induce splicing of the normally male‐specific isoform ofdoublesexin chromosomal females, while leaving males unaffected. Further,intersexRNAiwas found to phenocopy previously described RNAi phenotypes ofdoublesexin female but not male beetles. These findings match predictions derived from models of the sex determination cascade as developed largely through studies inDrosophila melanogaster. In contrast, efforts to targettransformer2via RNAi resulted in high juvenile mortality but did not appear to affectdoublesexsplicing, whereas RNAi targetingSex‐lethaland two putative orthologs ofhermaphroditeyielded no obvious phenotypic modifications in either males or females, raising the possibility that the function of a subset of sex determination genes may be derived in select Diptera and thus nonrepresentative of their roles in other holometabolous orders. Our results help illuminate how the differential evolutionary lability of the somatic sex determination pathway has contributed to the extraordinary morphological diversification of sex‐specific trait expression found in nature.more » « less
-
Abstract The biased use of male subjects in biomedical research has created limitations, underscoring the importance of including women to enhance the outcomes of evidence-based medicine and to promote human health. While federal policies (e.g., the 1993 Revitalization Act and the 2016 Sex as a Biological Variable Act) have aimed to improve sex balance in studies funded by the National Institutes of Health (NIH), data on sex inclusivity in non-NIH funded research remain limited. The objective of this study was to analyze the trend of sex inclusion in abstracts submitted to the Summer Biomechanics, Bioengineering, & Biotransport Conference (SB3C) over 7 years. We scored every abstract accepted to SB3C, and the findings revealed that approximately 20% of total abstracts included sex-related information, and this trend remained stable. Surprisingly, there was no significant increase in abstracts, including both sexes and those with balanced female and male samples. The proportion of abstracts with balanced sexes was notably lower than those including both sexes. Additionally, we examined whether the exclusion of one sex from the corresponding studies was justified by the research questions. Female-only studies had a 50% justification rate, while male-only studies had only 2% justification. Disparity in sex inclusion in SB3C abstracts was apparent, prompting us to encourage scientists to be more mindful of the sex of the research samples. Addressing sex inclusivity in biomechanics and mechanobiology research is essential for advancing medical knowledge and for promoting better healthcare outcomes for everyone.more » « less
-
Animal taxa show remarkable variability in sexual reproduction, where separate sexes, or gonochorism, is thought to have evolved from hermaphroditism for most cases. Hermaphroditism accounts for 5% in animals, and sequential hermaphroditism has been found in teleost. In this study, we characterized a novel form of the transient hermaphroditic stage in little yellow croaker ( Larimichthys polyactis ) during early gonadal development. The ovary and testis were indistinguishable from 7 to 40 days post-hatching (dph). Morphological and histological examinations revealed an intersex stage of male gonads between 43 and 80 dph, which consist of germ cells, somatic cells, efferent duct, and early primary oocytes (EPOs). These EPOs in testis degenerate completely by 90 dph through apoptosis yet can be rescued by exogenous 17- β -estradiol. Male germ cells enter the mitotic flourishing stage before meiosis is initiated at 180 dph, and they undergo normal spermatogenesis to produce functional sperms. This transient hermaphroditic stage is male-specific, and the ovary development appears to be normal in females. This developmental pattern is not found in the sister species Larimichthys crocea or any other closely related species. Further examinations of serum hormone levels indicate that the absence of 11-ketotestosterone and elevated levels of 17- β -estradiol delineate the male intersex gonad stage, providing mechanistic insights on this unique phenomenon. Our research is the first report on male-specific transient hermaphroditism and will advance the current understanding of fish reproductive biology. This unique gonadal development pattern can serve as a useful model for studying the evolutionary relationship between hermaphroditism and gonochorism, as well as teleost sex determination and differentiation strategies.more » « less
-
Synopsis The symposium “Large-scale biological phenomena arising from small-scale biophysical processes” at the SICB 2023 Annual General Meeting focused on the cross-disciplinary exploration of emergent phenomena in biology. Interactions between cells or organisms at small scales within a system can govern patterns occurring at larger scales in space, time, or biological complexity. This theme recurs in many sub-disciplines of biology, including cell and developmental biology, evolution, and ecology. This symposium, and the associated special issue introduced here, showcases a wide range of cross-disciplinary collaborations among biologists, physicists, and engineers. Technological advancements in microscopy and microfluidics, as well as complementary advances in mathematical modeling and associated theory demonstrate the timeliness of this issue. This introduction seeks to provide useful background information to place the studies within this issue in a broader biophysical context and highlight similarities in ideas and approaches across systems and sub-disciplines. We hope to demonstrate that cross-disciplinary research linking small-scale biophysics to larger-scale emergent phenomena can help us understand problems ranging from single-cell behaviors to tissue formation and function, evolution of form, and the dynamics of communities.more » « less
An official website of the United States government

