All data is not equally popular. Often, some portion of data is more frequently accessed than the rest, which causes a skew in popularity of the data items. Adapting to this skew can improve performance, and this topic has been studied extensively in the past for disk-based settings. In this work, we consider an in-memory data structure, namely hash table , and show how one can leverage the skew in popularity for higher performance. Hashing is a low-latency operation, sensitive to the effects of caching and code complexity, among other factors. These factors make learning in-the-loop challenging as the overhead of performing additional operations can have significant impact on performance. In this paper, we propose VIP hashing, a hash table method that uses lightweight mechanisms for learning the skew in popularity and adapting the hash table layout on the fly. These mechanisms are non-blocking, i.e, the hash table is operational at all times. The overhead is controlled by sensing changes in the popularity distribution to dynamically switch-on/off the mechanisms as needed. We ran extensive tests against a host of workloads generated by Wiscer , a homegrown benchmarking tool, and we find that VIP hashing improves performance in the presence of skew (22% increase in fetch operation throughput for a hash table with 1M keys under low skew) while adapting to insert and delete operations, and changing popularity distribution of keys on the fly. Our experiments on DuckDB show that VIP hashing reduces the end-to-end execution time of TPC-H query 9 by 20% under low skew.
more »
« less
Defending Hash Tables from Subterfuge with Depth Charge
We consider the problem of defending a hash table against a Byzantine attacker that is trying to degrade the performance of query, insertion and deletion operations. Our defense makes use of resource burning (RB)—the verifiable expenditure of network resources—where the issuer of a request incurs some RB cost. Our algorithm, Depth Charge, charges RB costs for operations based on the depth of the appropriate object in the list that the object hashes to in the table. By appropriately setting the RB costs, our algorithm mitigates the impact of an attacker on the hash table’s performance. In particular, in the presence of a significant attack, our algorithm incurs a cost which is asymptotically less that the attacker’s cost.
more »
« less
- PAR ID:
- 10494689
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the 25th International Conference on Distributed Computing and Networking
- ISBN:
- 9798400716737
- Page Range / eLocation ID:
- 134 to 143
- Subject(s) / Keyword(s):
- Algorithmic complexity attacks hash tables security resource burning
- Format(s):
- Medium: X
- Location:
- Chennai India
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Galdi, Celemente; Jarecki, Stanislaw (Ed.)In the past decade billions of user passwords have been exposed to the dangerous threat of offline password cracking attacks. An offline attacker who has stolen the cryptographic hash of a user's password can check as many password guesses as s/he likes limited only by the resources that s/he is willing to invest to crack the password. Pepper and key-stretching are two techniques that have been proposed to deter an offline attacker by increasing guessing costs. Pepper ensures that the cost of rejecting an incorrect password guess is higher than the (expected) cost of verifying a correct password guess. This is useful because most of the offline attacker's guesses will be incorrect. Unfortunately, as we observe the traditional peppering defense seems to be incompatible with modern memory hard key-stretching algorithms such as Argon2 or Scrypt. We introduce an alternative to pepper which we call Cost-Asymmetric Memory Hard Password Authentication which benefits from the same cost-asymmetry as the classical peppering defense i.e., the cost of rejecting an incorrect password guess is larger than the expected cost to authenticate a correct password guess. When configured properly we prove that our mechanism can only reduce the percentage of user passwords that are cracked by a rational offline attacker whose goal is to maximize (expected) profit i.e., the total value of cracked passwords minus the total guessing costs. We evaluate the effectiveness of our mechanism on empirical password datasets against a rational offline attacker. Our empirical analysis shows that our mechanism can reduce the percentage of user passwords that are cracked by a rational attacker by up to 10%.more » « less
-
Galdi, C; Jarecki, S. (Ed.)In the past decade billions of user passwords have been exposed to the dangerous threat of offline password cracking attacks. An offline attacker who has stolen the cryptographic hash of a user’s password can check as many password guesses as s/he likes limited only by the resources that s/he is willing to invest to crack the password. Pepper and key-stretching are two techniques that have been proposed to deter an offline attacker by increasing guessing costs. Pepper ensures that the cost of rejecting an incorrect password guess is higher than the (expected) cost of verifying a correct password guess. This is useful because most of the offline attacker’s guesses will be incorrect. Unfortunately, as we observe the traditional peppering defense seems to be incompatible with modern memory hard key-stretching algorithms such as Argon2 or Scrypt. We introduce an alternative to pepper which we call Cost-Asymmetric Memory Hard Password Authentication which benefits from the same cost-asymmetry as the classical peppering defense i.e., the cost of rejecting an incorrect password guess is larger than the expected cost to authenticate a correct password guess. When configured properly we prove that our mechanism can only reduce the percentage of user passwords that are cracked by a rational offline attacker whose goal is to maximize (expected) profit i.e., the total value of cracked passwords minus the total guessing costs. We evaluate the effectiveness of our mechanism on empirical password datasets against a rational offline attacker. Our empirical analysis shows that our mechanism can significantly reduce the percentage of user passwords that are cracked by a rational attacker by up to 10%.more » « less
-
Large-scale distributed storage systems, such as object stores, usually apply hashing-based placement and lookup methods to achieve scalability and resource efficiency. However, when object locations are determined by hash values, placement becomes inflexible, failing to optimize or satisfy application requirements such as load balance, failure tolerance, parallelism, and network/system performance. This work presents a novel solution to achieve the best of two worlds: flexibility while maintaining cost-effectiveness and scalability. The proposed method Smash is an object placement and lookup method that achieves full placement flexibility, balanced load, low resource cost, and short latency. Smash utilizes a recent space-efficient data structure and applies it to object-location lookups. We implement Smash as a prototype system and evaluate it in a public cloud. The analysis and experimental results show that Smash achieves full placement flexibility, fast storage operations, fast recovery from node dynamics, and lower DRAM cost (<60%) compared to existing hash-based solutions such as Ceph and MapX.more » « less
-
Multiversioning is widely used in databases, transactional memory, and concurrent data structures. It can be used to support read-only transactions that appear atomic in the presence of concurrent update operations. Any system that maintains multiple versions of each object needs a way of efficiently reclaiming them.We experimentally compare various existing reclamation techniques by applying them to a multiversion tree and a multiversion hash table. Using insights from these experiments, we develop two new multiversion garbage collection (MVGC) techniques. These techniques use two novel concurrent version list data structures. Our experimental evaluation shows that our fastest technique is competitive with the fastest existing MVGC techniques, while using significantly less space on some workloads. Our new techniques provide strong theoretical bounds, especially on space usage. These bounds ensure that the schemes have consistent performance, avoiding the very high worst-case space usage of other techniques.more » « less
An official website of the United States government

