skip to main content


This content will become publicly available on September 18, 2024

Title: Neural circuit mechanisms for transforming learned olfactory valences into wind-oriented movement

How memories are used by the brain to guide future action is poorly understood. In olfactory associative learning inDrosophila, multiple compartments of the mushroom body act in parallel to assign a valence to a stimulus. Here, we show that appetitive memories stored in different compartments induce different levels of upwind locomotion. Using a photoactivation screen of a new collection of split-GAL4 drivers and EM connectomics, we identified a cluster of neurons postsynaptic to the mushroom body output neurons (MBONs) that can trigger robust upwind steering. These UpWind Neurons (UpWiNs) integrate inhibitory and excitatory synaptic inputs from MBONs of appetitive and aversive memory compartments, respectively. After formation of appetitive memory, UpWiNs acquire enhanced response to reward-predicting odors as the response of the inhibitory presynaptic MBON undergoes depression. Blocking UpWiNs impaired appetitive memory and reduced upwind locomotion during retrieval. Photoactivation of UpWiNs also increased the chance of returning to a location where activation was terminated, suggesting an additional role in olfactory navigation. Thus, our results provide insight into how learned abstract valences are gradually transformed into concrete memory-driven actions through divergent and convergent networks, a neuronal architecture that is commonly found in the vertebrate and invertebrate brains.

 
more » « less
Award ID(s):
2034783
NSF-PAR ID:
10494753
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
eLife Sciences Publications
Date Published:
Journal Name:
eLife
Volume:
12
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ethanol tolerance is the first type of behavioral plasticity and neural plasticity that is induced by ethanol intake, and yet its molecular and circuit bases remain largely unexplored. Here, we characterize the following three distinct forms of ethanol tolerance in maleDrosophila: rapid, chronic, and repeated. Rapid tolerance is composed of two short-lived memory-like states, one that is labile and one that is consolidated. Chronic tolerance, induced by continuous exposure, lasts for 2 d, induces ethanol preference, and hinders the development of rapid tolerance through the activity of histone deacetylases (HDACs). Unlike rapid tolerance, chronic tolerance is independent of the immediate early geneHr38/Nr4a. Chronic tolerance is suppressed by the sirtuin HDACSirt1, whereas rapid tolerance is enhanced bySirt1. Moreover, rapid and chronic tolerance map to anatomically distinct regions of the mushroom body learning and memory centers. Chronic tolerance, like long-term memory, is dependent on new protein synthesis and it induces thekayak/c-fosimmediate early gene, but it depends on CREB signaling outside the mushroom bodies, and it does not require the Radish GTPase. Thus, chronic ethanol exposure creates an ethanol-specific memory-like state that is molecularly and anatomically different from other forms of ethanol tolerance.

    SIGNIFICANCE STATEMENTThe pattern and concentration of initial ethanol exposure causes operationally distinct types of ethanol tolerance to form. We identify separate molecular and neural circuit mechanisms for two forms of ethanol tolerance, rapid and chronic. We also discover that chronic tolerance forms an ethanol-specific long-term memory-like state that localizes to learning and memory circuits, but it is different from appetitive and aversive long-term memories. By contrast, rapid tolerance is composed of labile and consolidated short-term memory-like states. The multiple forms of ethanol memory-like states are genetically tractable for understanding how initial forms of ethanol-induced neural plasticity form a substrate for the longer-term brain changes associated with alcohol use disorder.

     
    more » « less
  2. Abstract

    Olfactory projection neurons convey information from the insect antennal lobe (AL) to higher brain centers. Previous reports have demonstrated that pheromone‐responsive projection neurons with cell bodies in the moth medial cell cluster (mcPNs) predominantly have dendritic arborizations in the sexually dimorphic macroglomerular complex (MGC) and send an axon from the AL to the calyces of the mushroom body (CA) as well as the lateral horn (LH) of the protocerebrum via the medial AL tract. These neurons typically exhibit a narrow odor tuning range related to the restriction of their dendritic arbors within a single glomerulus (uniglomerular). In this study, we report on the diverse physiological and morphological properties of a group of pheromone‐responsive olfactory projection neurons with cell bodies in the AL lateral cell cluster (MGClcPNs) of two closely related moth species. All pheromone‐responsivelcPNs appeared to exhibit “basket‐like” dendritic arborizations in two MGC compartments and made connections with various protocerebral targets including ventrolateral and superior neuropils via projections primarily through the lateral AL tract and to a lesser extent the mediolateral antennal lobe tract. Physiological characterization of MGClcPNs also revealed a diversity of response profiles including those either enhanced by or reliant upon presentation of a pheromone blend. These responses manifested themselves as higher maximum firing rates and/or improved temporal resolution of pulsatile stimuli. MGClcPNs therefore participate in conveying diverse olfactory information relating to qualitative and temporal facets of the pheromone stimulus to a more expansive number of protocerebral targets than theirmcPN counterparts.

     
    more » « less
  3. Animals employ diverse learning rules and synaptic plasticity dynamics to record temporal and statistical information about the world. However, the molecular mechanisms underlying this diversity are poorly understood. The anatomically defined compartments of the insect mushroom body function as parallel units of associative learning, with different learning rates, memory decay dynamics and flexibility (Aso and Rubin, 2016). Here, we show that nitric oxide (NO) acts as a neurotransmitter in a subset of dopaminergic neurons in Drosophila. NO’s effects develop more slowly than those of dopamine and depend on soluble guanylate cyclase in postsynaptic Kenyon cells. NO acts antagonistically to dopamine; it shortens memory retention and facilitates the rapid updating of memories. The interplay of NO and dopamine enables memories stored in local domains along Kenyon cell axons to be specialized for predicting the value of odors based only on recent events. Our results provide key mechanistic insights into how diverse memory dynamics are established in parallel memory systems. 
    more » « less
  4. Abstract

    Sleep is a fundamental behavioral state important for survival and is universal in animals with sufficiently complex nervous systems. As a highly conserved neurobehavioral state, sleep has been described in species ranging from jellyfish to humans. Biogenic amines like dopamine, serotonin and norepinephrine have been shown to be critical for sleep regulation across species but the precise circuit mechanisms underlying how amines control persistence of sleep, arousal and wakefulness remain unclear. The fruit fly,Drosophila melanogaster, provides a powerful model system for the study of sleep and circuit mechanisms underlying state transitions and persistence of states to meet the organisms motivational and cognitive needs. InDrosophila, two neuropils in the central brain, the mushroom body (MB) and the central complex (CX) have been shown to influence sleep homeostasis and receive aminergic neuromodulator input critical to sleep–wake switch. Dopamine neurons (DANs) are prevalent neuromodulator inputs to the MB but the mechanisms by which they interact with and regulate sleep- and wake-promoting neurons within MB are unknown. Here we investigate the role of subsets of PAM-DANs that signal wakefulness and project to wake-promoting compartments of the MB. We find that PAM-DANs are GABA responsive and require GABAA-Rdl receptor in regulating sleep. In mapping the pathways downstream of PAM neurons innervating γ5 and β′2 MB compartments we find that wakefulness is regulated by both DopR1 and DopR2 receptors in downstream Kenyon cells (KCs) and mushroom body output neurons (MBONs). Taken together, we have identified and characterized a dopamine modulated sleep microcircuit within the mushroom body that has previously been shown to convey information about positive and negative valence critical for memory formation. These studies will pave way for understanding how flies balance sleep, wakefulness and arousal.

     
    more » « less
  5. Abstract

    TheDrosophilamushroom body (MB) is an important model system for studying the synaptic mechanisms of associative learning. In this system, coincidence of odor-evoked calcium influx and dopaminergic input in the presynaptic terminals of Kenyon cells (KCs), the principal neurons of the MB, triggers long-term depression (LTD), which plays a critical role in olfactory learning. However, it is controversial whether such synaptic plasticity is accompanied by a corresponding decrease in odor-evoked calcium activity in the KC presynaptic terminals. Here, we address this question by inducing LTD by pairing odor presentation with optogenetic activation of dopaminergic neurons (DANs). This allows us to rigorously compare the changes at the presynaptic and postsynaptic sites in the same conditions. By imaging presynaptic acetylcholine release in the condition where LTD is reliably observed in the postsynaptic calcium signals, we show that neurotransmitter release from KCs is depressed selectively in the MB compartments innervated by activated DANs, demonstrating the presynaptic nature of LTD. However, total odor-evoked calcium activity of the KC axon bundles does not show concurrent depression. We further conduct calcium imaging in individual presynaptic boutons and uncover the highly heterogeneous nature of calcium plasticity. Namely, only a subset of boutons, which are strongly activated by associated odors, undergo calcium activity depression, while weakly responding boutons show potentiation. Thus, our results suggest an unexpected nonlinear relationship between presynaptic calcium influx and the results of plasticity, challenging the simple view of cooperative actions of presynaptic calcium and dopaminergic input.

     
    more » « less