skip to main content


Title: Engineering Ethics through High-Impact Game-Based Ethical Interventions: Design and Playful Assessment
Ethics education has been recognized as increasingly important to engineering over the past two decades, although disagreement exists concerning how ethics can and should be taught in the classroom. With the support from the National Science Foundation (NSF) Improving Undergraduate STEM Education (IUSE) program, a collaboration of investigators from the University of Connecticut, New Jersey Institute of Technology, University of Pittsburgh, and Rowan University are conducting a mixed-methods project investigating how game-based or playful learning with strongly situated components can influence first-year engineering students’ ethical knowledge, awareness, and decision making. We have conducted preliminary analyses of first-year students’ ethical reasoning and knowledge using the Defining Issues Test 2 (DIT-2), Engineering Ethics Reasoning Instrument (EERI), and concept map assessment to characterize where students “are at” when they come to college, the results of which can be found in past ASEE publications. Additionally, we have developed a suite of ethics-driven classroom games that have been implemented and evaluated across three universities, engaging over 400 first-year engineering students. Now in its third year, we are modifying and (re)designing two of the game- based ethics interventions to (1) more accurately align with the ethical dilemmas in the EERI, (2) allow for more flexibility in modality of how the games are distributed to faculty and students, and (3) provide more variety in terms of the contexts of ethical dilemmas as well as types of dilemmas. As part of the continued development of the game-based ethical interventions, we are piloting a new assessment tool specific for playful learning in engineering ethics and aimed at measuring students ethical reasoning and thought process after they have played the game(s). The past year has provided insight into the potential limitations of the existing methods for measuring changes in ethical reasoning in students, as well as compared changes between first year and senior students. The last year has highlighted the situated or contextual nature of much of the ethical decision making that students do and incorporated both qualitative and quantitative methods. Further results from this investigation will provide the engineering education community with a set of impactful and research-based playful learning pedagogy and assessment that will help students confront social and ethical dilemmas in their professional lives.  more » « less
Award ID(s):
1934707
NSF-PAR ID:
10494794
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ASEE Peer
Date Published:
Journal Name:
ASEE Annual Conference proceedings
ISSN:
1524-4644
Subject(s) / Keyword(s):
Ethics Assessment Games
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ethics education has been recognized as increasingly important to engineering over the past two decades, although disagreement exists concerning how ethics can and should be taught in the classroom. With active learning strategies becoming a preferred method of instruction, a collaboration of authors from four universities (University of Pittsburgh, University of Connecticut, Rowan University and New Jersey Institute of Technology) are investigating how game-based or playful learning with strongly situated components can influence first-year engineering students’ ethical knowledge, awareness, and decision making. This paper offers an overview and results of the progress to date of this three year, NSF Improving Undergraduate STEM Education (IUSE) grant that aims to (1) characterize the ethical awareness and decision making of first-year engineering students, (2) develop game-based learning interventions focused on ethical decision making, and (3) determine how (and why) game-based approaches affect students’ ethical awareness in engineering and the advantages of such approaches over non game-based approaches. Now in its second year, the authors have conducted a preliminary analysis of first-year students' ethical knowledge and organization via a concept mapping approach and have measured students' ethical reasoning using the Defining Issues Test 2 (DIT2) and Engineering Ethics Reasoning Instrument (EERI). Further, the authors have developed a suite of ethics-driven games that have been implemented across three of the universities, engaging over 400 first-year engineering students. Evaluation data has also been gathered for further game development and to assess initial student engagement and learning. Year 1 has provided insight into where first-year engineering students “are at” in terms of ethical knowledge and reasoning when they come to college, and how game-based instruction can be effective in the development of these students into moral agents who understand the consequences of their decisions. Further results from this investigation will provide the engineering education community with a set of impactful and research-based playful learning pedagogy and assessment that will help students confront social and ethical dilemmas in their professional lives. 
    more » « less
  2. This Innovative Practice Full Paper presents a novel, narrative, game-based approach to introducing first-year engineering students to concepts in ethical decision making. Approximately 250 first-year engineering students at the University of Connecticut played through our adventure, titled Mars: An Ethical Expedition, by voting weekly as a class on a presented dilemma. Literature shows that case studies still dominate learning sciences research on engineering ethical education, and that novel, active learning-based techniques, such as games, are infrequently used but can have a positive impact on both student engagement and learning. In this work, we suggest that games are a form of situated (context-based) learning, where the game setting provides learners with an authentic but safe space in which to explore engineering ethical choices and their consequences. As games normalize learning through failure, they present a unique opportunity for students to explore ethical decision making in a non-judgmental, playful, and safe way.We explored the situated nature of ethical decision making through a qualitative deconstruction of the weekly scenarios that students engaged with over the course of the twelve-week narrative. To assess their ethical reasoning, students took the Engineering Ethics Reasoning Instrument (EERI), a quantitative engineering ethics reasoning survey, at the beginning and end of the semester. The EERI scenarios were deconstructed to reveal their core ethical dilemmas, and then common elements between the EERI and our Mars adventure were compared to determine how students responded to similar ethical dilemmas presented in each context.We noted that students' responses to the ethical decisions in the Mars adventure scenarios were sometimes substantially different both from their response to the EERI scenario as well as from other decisions they made within the context of the game, despite the core ethical dilemma being the same. This suggests that they make ethical decisions in some situations that differ from a presumed abstract understanding of post-conventional moral reasoning. This has implications for how ethical reasoning can be taught and scaffolded in educational settings. 
    more » « less
  3. The past twenty years have seen the blossoming of ethics education in undergraduate engineering programs, largely as a response to the large-scale and high-impact engineering disasters that have occurred since the turn of the century. The functional form of this education differs significantly among institutions, and in recent years active learning that demonstrates a strong impact on students’ retention and synthesis of new material have taken hold as the preferred educational methodology. Among active learning strategies, gamified or playful learning has grown in popularity, with substantial evidence indicating that games can increase student participation and social interaction with their classmates and with the subject matter. A key goal of engineering ethics education is for students to learn how to identify, frame, and resolve ethical dilemmas. These dilemmas occur naturally in social situations, in which an individual must reconcile opposing priorities and viewpoints. Thus, it seems natural that as a part of their ethics education, students should discuss contextualized engineering ethical situations with their peers. How these discussions play out, and the manner in which students (particularly first-year engineering students) address and resolve ethical dilemmas in a group setting is the main topic of this research paper. In this study, first-year engineering students from three universities across the northeastern USA participated in group discussions involving engineering ethical scenarios derived from the Engineering Ethics Reasoning Instrument (EERI) and Toxic Workplaces: A Cooperative Ethics Card Game (a game developed by the researchers). Questions were posed to the student groups, which center upon concepts such as integrity, conflicting obligations, and the contextual nature of ethical decision making. An a priori coding schema based on these concepts was applied to analyze the student responses, based upon earlier iterations of this procedure performed in previous years of the study. The primary results from this research will aim to provide some insight about first-year engineering students' mindsets when identifying, framing, and resolving ethical dilemmas. This information can inform ethics education design and development strategies. Furthermore, the experimental procedure is also designed to provide a curated series of ethical engineering scenarios with accompanying discussion questions that could be adopted in any first-year classroom for instructional and evaluative purposes. 
    more » « less
  4. Abstract

    The Defining Issues Test 2 (DIT-2) and Engineering Ethical Reasoning Instrument (EERI) are designed to measure ethical reasoning of general (DIT-2) and engineering-student (EERI) populations. These tools—and the DIT-2 especially—have gained wide usage for assessing the ethical reasoning of undergraduate students. This paper reports on a research study in which the ethical reasoning of first-year undergraduate engineering students at multiple universities was assessed with both of these tools. In addition to these two instruments, students were also asked to create personal concept maps of the phrase “ethical decision-making.” It was hypothesized that students whose instrument scores reflected more postconventional levels of moral development and more sophisticated ethical reasoning skills would likewise have richer, more detailed concept maps of ethical decision-making, reflecting their deeper levels of understanding of this topic and the complex of related concepts. In fact, there was no significant correlation between the instrument scores and concept map scoring, suggesting that the way first-year studentsconceptualizeethical decision making does not predict the way they behave whenperformingscenario-based ethical reasoning (perhaps more situated). This disparity indicates a need to more precisely quantify engineering ethical reasoning and decision making, if we wish to inform assessment outcomes using the results of such quantitative analyses.

     
    more » « less
  5. We contend a better way to teach ethics to freshman engineering students would be to address engineering ethics not solely in the abstract of philosophy or moral development, but as situated in the everyday decisions of engineers. Since everyday decisions are not typically a part of university courses, our approach in large lecture classes is to simulate engineering decision-making situations using the role-playing mechanic and narrative structure of a fictional choose-your-own-adventure. Drawing on the contemporary learning theory of situated learning [1], [2], such playful learning may enable instructors to create assignments that induce students to break free of the typical student mindset of finding the “right” answer. Mars: An Ethical Expedition! is an interactive, 12 week, narrative game about the colonization of Mars by various engineering specialists. Students take on the role of a head engineer and are presented with situations that require high-stakes decision-making. Various game mechanics induce students to act as they would on-the-fly, within a real engineering project context, using personal reasoning and richly context-dependent justifications, rather than simply right/wrong answers. Each segment of the game is presented in audio and text that ends with a binary decision that determines what will happen next in the story. Historically, this game had been led by an instructor and played weekly, as a whole-class assignment, completed at the beginning of class. The class votes and the majority option is presented next. In addition to the central decision, there are also follow-up questions at the end of each week that provoke deeper analysis of the situation and reflection on the ethical principles involved. This prototype was initially developed within a learning management system, then supported by the TwineTM game engine, and studied in use in our 2021 NSF EETHICS grant. In 2022-23 the game was redesigned and extended using the GodotTM game engine. In addition to streamlining the gameplay loop and reducing the set-up and data management required by instructors, this redesign supported instructors with an option to allow the game to be student-paced and played by individual students or to keep the instructor-led 12 week whole-class playstyle. Our proposed driving research question is "In what ways does individual student play differ from whole class instructor-led play with regard to learning that ethical behavior is situated?" In the next phase of our ongoing investigation, we plan to further evaluate the use of playful assessment to estimate its validity and reliability in comparison to current best practices of engineering ethics assessment. 
    more » « less