skip to main content


This content will become publicly available on September 2, 2024

Title: In-situ study of rules of nanostructure evolution, severe plastic deformations, and friction under high pressure
Severe plastic deformations under high pressure are used to produce nanostructured materials but were studied ex-situ. Rough diamond anvils are introduced to reach maximum friction equal to yield strength in shear and the first in-situ study of the evolution of the pressure-dependent yield strength and radial distribution of nano structural parameters are performed for severely pre-deformed Zr.ω-Zr behaves like perfectly plastic, isotropic, and strain-path-independent and reaches steady values of the crystallite size and dislocation density, which are pressure-, strain- and strain-path-independent. However, steady states forα-Zr obtained with smooth and rough anvils are different, causing major challenge in plasticity theory.  more » « less
Award ID(s):
2246991
NSF-PAR ID:
10494861
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Taylor & Francis
Date Published:
Journal Name:
Materials Research Letters
Volume:
11
Issue:
9
ISSN:
2166-3831
Page Range / eLocation ID:
757 to 763
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Study of the plastic flow, strain-induced phase transformations (PTs), and nanostructure evolution under high pressure is important for producing new nanostructured phases and understanding physical processes. However, these processes depend on an unlimited combination of five plastic strain components and an entire strain path with no hope of fully comprehending. Here, we introduce the rough diamond anvils (rough-DA) to reach maximum friction equal to the yield strength in shear, which allows determination of pressure-dependent yield strength. We apply rough-DA to compression of severely pre-deformed Zr. We found in situ that after severe straining, crystallite size and dislocation density of α and ω-Zr are getting pressure-, strain- and strain-path-independent, reach steady values before and after PT, and depend solely on the volume fraction of ω-Zr during PT. Immediately after completing PT, ω-Zr behaves like perfectly plastic, isotropic, and strain-path-independent. Rough-DA produces a steady nanostructure in α-Zr with lower crystallite size and larger dislocation density than smooth diamonds. This leads to a record minimum pressure (0.67 GPa) for α-ω PT. Kinetics of strain-induced PT, in addition to plastic strain, unexpectedly depends on time. The obtained results significantly enrich the fundamental understanding of plasticity, PTs, and nanostructure, and create new opportunities in material design, synthesis, and processing of nanostructured materials by coupling severe plastic deformations and PT at low pressure. 
    more » « less
  2. Severe plastic deformations under high pressure are used to produce nanostructured materials but were studied ex-situ. We introduce rough diamond anvils to reach maximum friction equal to yield strength in shear and perform the first in-situ study of the evolution of the pressure-dependent yield strength and nanostructural parameters for severely pre-deformed Zr. ω-Zr behaves like perfectly plastic, isotropic, and strain-path-independent. This is related to reaching steady values of the crystallite size and dislocation density, which are pressure-, strain- and strain-path-independent. However, steady states for α-Zr obtained with smooth and rough anvils are different, which causes major challenge in plasticity theory. 
    more » « less
  3. Study of the plastic flow and strain-induced phase transformations (PTs) under high pressure with diamond anvils is important for material and geophysics. We introduce rough diamond anvils and apply them to Zr, which drastically change the plastic flow, microstructure, and PTs. Multiple steady microstructures independent of pressure, plastic strain, and strain path are reached. Maximum friction equal to the yield strength in shear is achieved. This allows determination of the pressure-dependence of the yield strength and proves that omega-Zr behaves like perfectly plastic, isotropic, and strain path-independent immediately after PT. Record minimum pressure for alpha-omega PT was identified. Kinetics of strain-induced PT depends on plastic strain and time. Crystallite size and dislocation density in omega-Zr during PT depend solely on the volume fraction of omega-Zr. 
    more » « less
  4. Study of the plastic flow and strain-induced phase transformations (PTs) under high pressure with diamond anvils is important for material and geophysics. We introduce rough diamond anvils and apply them to Zr, which drastically change the plastic flow, microstructure, and PTs. Multiple steady microstructures independent of pressure, plastic strain, and strain path are reached. Maximum friction equal to the yield strength in shear is achieved. This allows determination of the pressure-dependence of the yield strength and proves that ω-Zr behaves like perfectly plastic, isotropic, and strain path-independent immediately after PT. Record minimum pressure for α-ω PT was identified. Kinetics of strain-induced PT depends on plastic strain and time. Crystallite size and dislocation density in ω-Zr during PT depend solely on the volume fraction of ω-Zr. 
    more » « less
  5. The first in situ quantitative synchrotron X-ray diffraction (XRD) study of plastic strain-induced phase transformation (PT) has been performed on $\alpha-\omega$ PT in ultra-pure, strongly plastically predeformed Zr as an example, under different compression-shear pathways in rotational diamond anvil cell (RDAC). Radial distributions of pressure in each phase and in the mixture, and concentration of $\omega$-Zr, all averaged over the sample thickness, as well as thickness profile were measured. The minimum pressure for the strain-induced $\alpha-\omega$ PT, $p^d_{\varepsilon}$=1.2 GPa, is smaller than under hydrostatic loading by a factor of 4.5 and smaller than the phase equilibrium pressure by a factor of 3; it is independent of the compression-shear straining path. The theoretically predicted plastic strain-controlled kinetic equation was verified and quantified; it is independent of the pressure-plastic strain loading path and plastic deformation at pressures below $p^d_{\varepsilon}$. Thus, strain-induced PTs under compression in DAC and torsion in RDAC do not fundamentally differ. The yield strength of both phases is estimated using hardness and x-ray peak broadening; the yield strength in shear is not reached by the contact friction stress and cannot be evaluated using the pressure gradient. Obtained results open a new opportunity for quantitative study of strain-induced PTs and reactions with applications to material synthesis and processing, mechanochemistry, and geophysics. 
    more » « less