skip to main content


Title: Stoichiometric Control and Optical Properties of BaTiO 3 Thin Films Grown by Hybrid MBE
Abstract

BaTiO3is a technologically relevant material in the perovskite oxide class with above‐room‐temperature ferroelectricity and a very large electro‐optical coefficient, making it highly suitable for emerging electronic and photonic devices. An easy, robust, straightforward, and scalable growth method is required to synthesize epitaxial BaTiO3thin films with sufficient control over the film's stoichiometry to achieve reproducible thin film properties. Here the growth of BaTiO3thin films by hybrid molecular beam epitaxy is reported. A self‐regulated growth window is identified using complementary information obtained from reflection high energy electron diffraction, the intrinsic film lattice parameter, film surface morphology, and scanning transmission electron microscopy. Subsequent optical characterization of the BaTiO3films by spectroscopic ellipsometry revealed refractive index and extinction coefficient values closely resembling those of stoichiometric bulk BaTiO3crystals for films grown inside the growth window. Even in the absence of a lattice parameter change of BaTiO3thin films, degradation of optical properties is observed, accompanied by the appearance of a wide optical absorption peak in the IR spectrum, attributed to optical transitions involving defect states present. Therefore, the optical properties of BaTiO3can be utilized as a much finer and more straightforward probe to determine the stoichiometry level present in BaTiO3films.

 
more » « less
Award ID(s):
1905861
NSF-PAR ID:
10495024
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
10.1002/admi.202300018
Date Published:
Journal Name:
Advanced Materials Interfaces
Volume:
10
Issue:
11
ISSN:
2196-7350
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Spin‐state transitions are an important research topic in complex oxides with the diverse magnetic states involved. In particular, the low‐spin to high‐spin transition in LaCoO3thin films has drawn a wide range of attention due to the emergent ferromagnetic state. Although various mechanisms (e.g., structural distortion, oxygen‐vacancy formation, spin‐state ordering) have been proposed, an understanding of what really underlies the emergent ferromagnetism remains elusive. Here, the ferromagnetism in LaCoO3thin films is systematically modulated by varying the oxygen pressure during thin‐film growth. Although the samples show dramatic different magnetization, their cobalt valence state and perovskite crystalline structure remain almost unchanged, ruling out the scenarios of both oxygen‐vacancy and spin‐ordering. This work provides compelling evidence that the tetragonal distortion due to the tensile strain significantly modifies the orbital occupancy, leading to a low‐spin to high‐spin transition with emergent ferromagnetism, while samples grown at reduced pressure demonstrate a pronounced lattice expansion due to cation‐off‐stoichiometry, which suppresses the tetragonal distortion and the consequent magnetization. This result not only provides important insight for the understanding of exotic ferromagnetism in LaCoO3thin films, but also identifies a promising strategy to design electronic states in complex oxides through cation‐stoichiometry engineering.

     
    more » « less
  2. The effects of growth conditions on the chemistry, structure, electrical leakage, dielectric response, and ferroelectric behavior of Ba 1−x TiO y thin films are explored. Although single-phase, coherently-strained films are produced in all cases, small variations in the laser fluence during pulsed-laser deposition growth result in films with chemistries ranging from BaTiO 3 to Ba 0.93 TiO 2.87 . As the laser fluence increases, the films become more barium deficient and the out-of-plane lattice parameter expands (as much as 5.4% beyond the expected value for Ba 0.93 TiO 2.87 films). Stoichiometric BaTiO 3 films are found to be three orders of magnitude more conducting than Ba 0.93 TiO 2.87 films and the barium-deficient films exhibit smaller low-field permittivity, lower loss tangents, and higher dielectric maximum temperatures. Although large polarization is observed in all cases, large built-in potentials (shifted loops) and hysteresis-loop pinching are present in barium-deficient films – suggesting the presence of defect dipoles. The effects of these defect dipoles on ferroelectric hysteresis are studied using first-order reversal curves. Temperature-dependent current–voltage and deep-level transient spectroscopy studies reveal at least two defect states, which grow in concentration with increasing deficiency of both barium and oxygen, at ∼0.4 eV and ∼1.2 eV above the valence band edge, which are attributed to defect–dipole complexes and defect states, respectively. The defect states can also be removed via ex post facto processing. Such work to understand and control defects in this important material could provide a pathway to enable better control over its properties and highlight new avenues to manipulate functions in these complex materials. 
    more » « less
  3. Abstract

    The making of BaZrS3thin films by molecular beam epitaxy (MBE) is demonstrated. BaZrS3forms in the orthorhombic distorted‐perovskite structure with corner‐sharing ZrS6octahedra. The single‐step MBE process results in films smooth on the atomic scale, with near‐perfect BaZrS3stoichiometry and an atomically sharp interface with the LaAlO3substrate. The films grow epitaxially via two competing growth modes: buffered epitaxy, with a self‐assembled interface layer that relieves the epitaxial strain, and direct epitaxy, with rotated‐cube‐on‐cube growth that accommodates the large lattice constant mismatch between the oxide and the sulfide perovskites. This work sets the stage for developing chalcogenide perovskites as a family of semiconductor alloys with properties that can be tuned with strain and composition in high‐quality epitaxial thin films, as has been long‐established for other systems including Si‐Ge, III‐Vs, and II‐VIs. The methods demonstrated here also represent a revival of gas‐source chalcogenide MBE.

     
    more » « less
  4. Epitaxial growth of κ-phase Ga 2 O 3 thin films is investigated on c-plane sapphire, GaN- and AlN-on-sapphire, and (100) oriented yttria stabilized zirconia (YSZ) substrates via metalorganic chemical vapor deposition. The structural and surface morphological properties are investigated by comprehensive material characterization. Phase pure κ-Ga 2 O 3 films are successfully grown on GaN-, AlN-on-sapphire, and YSZ substrates through a systematical tuning of growth parameters including the precursor molar flow rates, chamber pressure, and growth temperature, whereas the growth on c-sapphire substrates leads to a mixture of β- and κ-polymorphs of Ga 2 O 3 under the investigated growth conditions. The influence of the crystalline structure, surface morphology, and roughness of κ-Ga 2 O 3 films grown on different substrates are investigated as a function of precursor flow rate. High-resolution scanning transmission electron microscopy imaging of κ-Ga 2 O 3 films reveals abrupt interfaces between the epitaxial film and the sapphire, GaN, and YSZ substrates. The growth of single crystal orthorhombic κ-Ga 2 O 3 films is confirmed by analyzing the scanning transmission electron microscopy nanodiffraction pattern. The chemical composition, surface stoichiometry, and bandgap energies of κ-Ga 2 O 3 thin films grown on different substrates are studied by high-resolution x-ray photoelectron spectroscopy (XPS) measurements. The type-II (staggered) band alignments at three interfaces between κ-Ga 2 O 3 and c-sapphire, AlN, and YSZ substrates are determined by XPS, with an exception of κ-Ga 2 O 3 /GaN interface, which shows type-I (straddling) band alignment. 
    more » « less
  5. null (Ed.)
    Due to environmental concerns and the increasing drive towards miniaturization of electronic circuits and devices, lead-free ferroelectric films with low leakage current and robust ferroelectric and piezoelectric properties are highly desired. The preferred alternative, BaTiO 3 , is non-toxic and has ferroelectric properties, but its high leakage current, poor ferroelectricity and piezoelectricity and low Curie temperature of ∼130 °C in thin film form are obstacles for high-temperature practical applications. Here, we report that a negative-pressure-driven enhancement of ferroelectric Curie temperature and effective piezoelectric coefficient are achieved in (111)-oriented BaTiO 3 nanocomposite films. The enhanced ferroelectric and piezoelectric properties in the emergent monoclinic BaTiO 3 are attributed to the sharp vertical interface and 3D tensile strain that develops upon interspersing stiff and self-assembled vertical Sm 2 O 3 nanopillars through the film thickness. Our work also demonstrates that fabricating oxide films through (111)-oriented epitaxy opens up new avenues for the creation of new phase components and exploration of novel functionalities for developing oxide quantum electronic devices. 
    more » « less