Exotic material properties and topological nontrivial surface states have been theoretically predicted to emerge in [111]-oriented perovskite layers. The realization of such [111]-oriented perovskite superlattices has been found challenging, and even the growth of perovskite oxide films along this crystallographic direction has been proven as a formidable task, attributed to the highly polar character of the perovskite (111) surface. Successful epitaxial growth along this direction has so far been limited to thin film deposition techniques involving a relatively high kinetic energy, specifically pulsed laser deposition and sputtering. Here, we report on the self-regulated growth of [111]-oriented high-quality SrVO3 by hybrid molecular beam epitaxy. The favorable growth kinetics available for the growth of perovskite oxides by hybrid molecular beam epitaxy on non-polar surfaces was also present for the growth of [111]-oriented films, resulting in high-quality SrVO3(111) thin films with residual resistivity ratios exceeding 20. The ability to grow high-quality perovskite oxides along energetically unfavorable crystallographic directions using hybrid molecular beam epitaxy opens up opportunities to study the transport properties of topological nontrivial and correlated electron systems.
more » « less- NSF-PAR ID:
- 10495028
- Publisher / Repository:
- 10.1063/5.0040047
- Date Published:
- Journal Name:
- APL Materials
- Volume:
- 9
- Issue:
- 2
- ISSN:
- 2166-532X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Magnetic materials with kagome crystal structure exhibit rich physics, such as frustrated magnetism, skyrmion formation, topological flat bands, and Dirac/Weyl points. Until recently, most studies on kagome magnets have been performed on bulk crystals or polycrystalline films. Here, we report the atomic layer molecular beam epitaxy synthesis of high-quality thin films of topological kagome magnet Fe 3 Sn 2 . The structural and magnetic characterization of Fe 3 Sn 2 on epitaxial Pt(111) identifies highly ordered films with c-plane orientation and an in-plane magnetic easy axis. Studies on the local magnetic structure by anomalous Nernst effect imaging reveal in-plane oriented micrometer size domains. Superlattice structures consisting of Fe 3 Sn 2 and Fe 3 Sn are also synthesized by atomic layer molecular beam epitaxy, demonstrating the ability to modulate the sample structure at the atomic level. The realization of high-quality films by atomic layer molecular beam epitaxy opens the door to explore the rich physics of this system and investigate novel spintronic phenomena by interfacing Fe 3 Sn 2 with other materials.more » « less
-
Abstract A multistep deposition technique is developed to produce highly oriented diamond films by hot filament chemical vapor deposition (HFCVD) on Si (111) substrates. The orientation is produced by use of a thin, 5–20 nm, Ni interlayer. Annealing studies demonstrate diffusion of Ni into Si to form nickel silicides with crystal structure depending on temperature. The HFCVD diamond film with Ni interlayer results in reduced non-diamond carbon, low surface roughness, high diamond crystal quality, and increased texturing relative to growth on bare silicon wafers. X-ray diffraction results show that the diamond film grown with 10 nm Ni interlayer yielded 92.5% of the diamond grains oriented along the (110) crystal planes with ~ 2.5 µm thickness and large average grain size ~ 1.45 µm based on scanning electron microscopy. Texture is also observed to develop for ~ 300 nm thick diamond films with ~ 89.0% of the grains oriented along the (110) crystal plane direction. These results are significantly better than diamond grown on Si (111) without Ni layer with the same HFCVD conditions. The oriented growth of diamond film on Ni interlayers is explained by a proposed model wherein the nano-diamond seeds becoming oriented relative to the β1-Ni3Si that forms during the diamond nucleation period. The model also explains the silicidation and diamond growth processes.
Article Highlights High quality diamond film with minimum surface roughness and ~93% oriented grains along (110) crystallographic direction is grown on Si substrate using a thin 5 to 20 nm nickel layer.
A detailed report on the formation of different phases of nickel silicide, its stability with different temperature, and its role for diamond film texturing at HFCVD growth condition is presented.
A diamond growth model on Si substrate with Ni interlayer to grow high quality-oriented diamond film is established.
-
Sb thin films have attracted wide interest due to their tunable band structure, topological phases, high electron mobility, and thermoelectric properties. We successfully grow epitaxial Sb thin films on a closely lattice-matched GaSb(001) surface by molecular beam epitaxy. We find a novel anisotropic directional dependence on their structural, morphological, and electronic properties. The origin of the anisotropic features is elucidated using first-principles density functional theory (DFT) calculations. The growth regime of crystalline and amorphous Sb thin films was determined by mapping the surface reconstruction phase diagram of the GaSb(001) surface under Sb2 flux, with confirmation of structural characterizations. Crystalline Sb thin films show a rhombohedral crystal structure along the rhombohedral (211) surface orientation parallel to the cubic (001) surface orientation of the GaSb substrate. At this coherent interface, Sb atoms are aligned with the GaSb lattice along the [1̄10] crystallographic direction but are not aligned well along the [110] crystallographic direction, which results in anisotropic features in reflection of high-energy electron diffraction patterns, misfit dislocation formation, surface morphology, and transport properties. Our DFT calculations show that the preferential orientation of the rhombohedral Sb (211) plane may originate from the GaSb surface, where Sb atoms align with the Ga and Sb atoms on the reconstructed surface. The formation energy calculations confirm the stability of the experimentally observed structures. Our results provide optimal film growth conditions for further studies of novel properties of Bi1−xSbx thin films with similar lattice parameters and an identical crystal structure, as well as functional heterostructures of them with III–V semiconductor layers along the (001) surface orientation, supported by a theoretical understanding of the anisotropic film orientation.
-
Abstract Germanium-based oxides such as rutile GeO 2 are garnering attention owing to their wide band gaps and the prospects of ambipolar doping for application in high-power devices. Here, we present the use of germanium tetraisopropoxide (GTIP), a metal-organic chemical precursor, as a source of germanium for the demonstration of hybrid molecular beam epitaxy for germanium-containing compounds. We use Sn 1- x Ge x O 2 and SrSn 1- x Ge x O 3 as model systems to demonstrate our synthesis method. A combination of high-resolution X-ray diffraction, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy confirms the successful growth of epitaxial rutile Sn 1- x Ge x O 2 on TiO 2 (001) substrates up to x = 0.54 and coherent perovskite SrSn 1- x Ge x O 3 on GdScO 3 (110) substrates up to x = 0.16. Characterization and first-principles calculations corroborate that germanium occupies the tin site, as opposed to the strontium site. These findings confirm the viability of the GTIP precursor for the growth of germanium-containing oxides by hybrid molecular beam epitaxy, thus providing a promising route to high-quality perovskite germanate films.more » « less
-
Nanocrystalline MnFe2O4 has shown promise as a catalyst for the oxygen reduction reaction (ORR) in alkaline solutions, but the material has been sparingly studied as highly ordered thin-film catalysts. To examine the role of surface termination and Mn and Fe site occupancy, epitaxial MnFe2O4 and Fe3O4 spinel oxide films were grown on (001)- and (111)-oriented Nb:SrTiO3 perovskite substrates using molecular beam epitaxy and studied as electrocatalysts for the oxygen reduction reaction (ORR). High-resolution X-ray diffraction (HRXRD) and X-ray photoelectron spectroscopy (XPS) show the synthesis of pure phase materials, while scanning transmission electron microscopy (STEM) and reflection high-energy electron diffraction (RHEED) analysis demonstrate island-like growth of (111) surface-terminated pyramids on both (001)- and (111)-oriented substrates, consistent with the literature and attributed to the lattice mismatch between the spinel films and the perovskite substrate. Cyclic voltammograms under a N2 atmosphere revealed distinct redox features for Mn and Fe surface termination based on comparison of MnFe2O4 and Fe3O4. Under an O2 atmosphere, electrocatalytic reduction of oxygen was observed at both Mn and Fe redox features; however, a diffusion-limited current was only achieved at potentials consistent with Fe reduction. This result contrasts with that of nanocrystalline MnFe2O4 reported in the literature where the diffusion-limited current is achieved with Mn-based catalysis. This difference is attributed to a low density of Mn surface termination, as determined by the integration of current from CVs collected under N2, in addition to low conductivity through the MnFe2O4 film due to the degree of inversion. Such low densities are attributed to the synthetic method and island-like growth pattern and highlight challenges in studying ORR catalysis with single-crystal spinel materials.more » « less