The rapidly expanding severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) and its variants demand a continuous monitoring method through portable and wearable devices. Utilizing the rich surface chemistry and high chemical‐to‐electrical signal conversion of 2D MXene‐graphene heterostructure thin films, a field‐effect‐transistor (FET) sensor, which has a flexible substrate to be assembled onto the mask and combines with a Bluetooth system for wireless transmission is developed, to detect the influenza and SARS‐CoV‐2 viruses in air and breath. At first, the developed sensors are examined in the laboratory through direct contact with sensing targets in solution form. The results show a low limit of detection (LOD) of 1 fg mL−1for recombinant SARS‐CoV‐2 spike protein and 125 copies mL−1for inactivated influenza A (H1N1) virus with high specificity in differing recombinant SARS‐CoV‐2 spike protein and inactivated H1N1 virus. Then the sensors are tested under various simulated human breathing modes through controlled exposure to atomizer‐generated aerosols in an enclosed chamber and mask coverage. The results show the high sensitivity of the developed sensors under varying distances to the source, viral load, flow rate, and enclosed conditions. At last, clinical tests are carried out to demonstrate the robustness and potential field applications of the sensors.
Sensing of viral antigens has become a critical tool in combating infectious diseases. Current sensing techniques have a tradeoff between sensitivity and time of detection; with 10–30 min of detection time at a relatively low sensitivity and 6–12 h of detection at a high (picomolar) sensitivity. In this research, uniquely nanoengineered interfaces are demonstrated on 3D electrodes that enable the detection of spike antigens of SARS‐CoV‐2 and their variants in seconds at femtomolar concentrations with excellent specificity, thus, overcoming this tradeoff. The 3D electrodes, manufactured using a high‐resolution aerosol jet 3D nanoprinter, consist of a microelectrode array of sintered gold nanoparticles coated with graphene and antibodies specific to severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) spike antigens. An impedance‐based sensing modality is employed to sense several pseudoviruses of SARS‐CoV‐2 variants of concern (VOCs). This device is sensitive to most of the pseudoviruses of SARS‐CoV‐2 VOCs. A high sensitivity of 100 f
- PAR ID:
- 10495117
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials Interfaces
- ISSN:
- 2196-7350
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Site specific N- and O-glycosylation mapping of the spike proteins of SARS-CoV-2 variants of concern
Abstract The glycosylation on the spike (S) protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, modulates the viral infection by altering conformational dynamics, receptor interaction and host immune responses. Several variants of concern (VOCs) of SARS-CoV-2 have evolved during the pandemic, and crucial mutations on the S protein of the virus have led to increased transmissibility and immune escape. In this study, we compare the site-specific glycosylation and overall glycomic profiles of the wild type Wuhan-Hu-1 strain (WT) S protein and five VOCs of SARS-CoV-2: Alpha, Beta, Gamma, Delta and Omicron. Interestingly, both N- and O-glycosylation sites on the S protein are highly conserved among the spike mutant variants, particularly at the sites on the receptor-binding domain (RBD). The conservation of glycosylation sites is noteworthy, as over 2 million SARS-CoV-2 S protein sequences have been reported with various amino acid mutations. Our detailed profiling of the glycosylation at each of the individual sites of the S protein across the variants revealed intriguing possible association of glycosylation pattern on the variants and their previously reported infectivity. While the sites are conserved, we observed changes in the N- and O-glycosylation profile across the variants. The newly emerged variants, which showed higher resistance to neutralizing antibodies and vaccines, displayed a decrease in the overall abundance of complex-type glycans with both fucosylation and sialylation and an increase in the oligomannose-type glycans across the sites. Among the variants, the glycosylation sites with significant changes in glycan profile were observed at both the
N -terminal domain and RBD of S protein, with Omicron showing the highest deviation. The increase in oligomannose-type happens sequentially from Alpha through Delta. Interestingly, Omicron does not contain more oligomannose-type glycans compared to Delta but does contain more compared to the WT and other VOCs. O-glycosylation at the RBD showed lower occupancy in the VOCs in comparison to the WT. Our study on the sites and pattern of glycosylation on the SARS-CoV-2 S proteins across the VOCs may help to understand how the virus evolved to trick the host immune system. Our study also highlights how the SARS-CoV-2 virus has conserved bothN - andO - glycosylation sites on the S protein of the most successful variants even after undergoing extensive mutations, suggesting a correlation between infectivity/ transmissibility and glycosylation. -
Abstract Rapid, inexpensive, and easy-to-use coronavirus disease 2019 (COVID-19) home tests are key tools in addition to vaccines in the world wide fight to eliminate national and local shutdowns. However, currently available tests for SARS-CoV-2, the virus that causes COVID-19, are too expensive, painful, and irritating, or not sufficiently sensitive for routine, accurate home testing. Herein, we employ custom-formulated graphene inks and aerosol jet printing to create a rapid electrochemical immunosensor for direct detection of SARS-CoV-2 spike receptor-binding domain (RBD) in saliva samples acquired noninvasively. This sensor demonstrated limits of detection that are considerably lower than most commercial SARS-CoV-2 antigen tests (22.91 ± 4.72 pg ml −1 for spike RBD and 110.38 ± 9.00 pg ml −1 for spike S1) as well as fast response time (∼30 min), which was facilitated by the functionalization of printed graphene electrodes in a single-step with SARS-CoV-2 polyclonal antibody through the carbodiimide reaction without the need for nanoparticle functionalization or secondary antibody or metallic nanoparticle labels. This immunosensor presents a wide linear sensing range from 1 to 1000 ng ml −1 and does not react with other coexisting influenza viruses such as H1N1 hemagglutinin. By combining high-yield graphene ink synthesis, automated printing, high antigen selectivity, and rapid testing capability, this work offers a promising alternative to current SARS-CoV-2 antigen tests.more » « less
-
Abstract There is a need for rapid, sensitive, specific, and low‐cost virus sensors. Recent work has demonstrated that organic electrochemical transistors (OECTs) can detect the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) spike protein. Here, a simple and low‐cost approach to the fabrication of OECT devices with excellent stability and unprecedented sensitivity and specificity for the detection of SARS‐CoV‐2 virus is demonstrated. The devices rely on the engineered protein minibinder LCB1, which binds strongly to SARS‐CoV‐2. The resulting devices exhibit excellent sensitivity for the detection of SARS‐CoV‐2 virus and SARS‐CoV‐2 spike protein receptor binding domain (RBD). These results demonstrate a simple, effective, and low‐cost biomolecular sensor applicable to the real‐time detection of SARS‐CoV‐2 virus and a general strategy for OECT device design that can be applied for the detection of other pathogenic viruses.
-
Elkins, Christopher A. (Ed.)ABSTRACT Monitoring the prevalence of SARS-CoV-2 variants is necessary to make informed public health decisions during the COVID-19 pandemic. PCR assays have received global attention, facilitating a rapid understanding of variant dynamics because they are more accessible and scalable than genome sequencing. However, as PCR assays target only a few mutations, their accuracy could be reduced when these mutations are not exclusive to the target variants. Here we introduce PRIMES, an algorithm that evaluates the sensitivity and specificity of SARS-CoV-2 variant-specific PCR assays across different geographical regions by incorporating sequences deposited in the GISAID database. Using PRIMES, we determined that the accuracy of several PCR assays decreased when applied beyond the geographic scope of the study in which the assays were developed. Subsequently, we used this tool to design Alpha and Delta variant-specific PCR assays for samples from Illinois, USA. In silico analysis using PRIMES determined the sensitivity/specificity to be 0.99/0.99 for the Alpha variant-specific PCR assay and 0.98/1.00 for the Delta variant-specific PCR assay in Illinois, respectively. We applied these two variant-specific PCR assays to six local sewage samples and determined the dominant SARS-CoV-2 variant of either the wild type, the Alpha variant, or the Delta variant. Using next-generation sequencing (NGS) of the spike (S) gene amplicons of the Delta variant-dominant samples, we found six mutations exclusive to the Delta variant (S:T19R, S:Δ156/157, S:L452R, S:T478K, S:P681R, and S:D950N). The consistency between the variant-specific PCR assays and the NGS results supports the applicability of PRIMES. IMPORTANCE Monitoring the introduction and prevalence of variants of concern (VOCs) and variants of interest (VOIs) in a community can help the local authorities make informed public health decisions. PCR assays can be designed to keep track of SARS-CoV-2 variants by measuring unique mutation markers that are exclusive to the target variants. However, the mutation markers may not be exclusive to the target variants because of regional and temporal differences in variant dynamics. We introduce PRIMES, an algorithm that enables the design of reliable PCR assays for variant detection. Because PCR is more accessible, scalable, and robust for sewage samples than sequencing technology, our findings will contribute to improving global SARS-CoV-2 variant surveillance.more » « less