skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phylogeography of the Cow Knob Salamander (Plethodon punctatus Highton): populations on isolated Appalachian mountaintops are disjunct but not divergent
Although many studies have examined how taxa responded to Pleistocene climate fluctuations in the Appalachian Mountains, impacts on high-elevation endemics of Central Appalachia are not yet understood. We use mitochondrial (ND4 & Cytb) and nuclear (GAPD) DNA sequences to investigate the phylogeography of the Cow Knob Salamander (Plethodon punctatus), a woodland species from Central Appalachian highlands thought to have origins in the Pleistocene. Data from 72 tail tips representing 25 sites revealed that the species comprises two geographically cohesive mitochondrial clades with a narrow, putative contact zone on Shenandoah Mountain. Molecular clock estimates indicate the clades diverged in the Middle Pleistocene. The population size of the Southern clade appears to have remained stable for at least 50,000 years. Despite spanning several isolated mountain systems, the Northern clade has exceptionally low genetic diversity, probably due to recent demographic expansion. Palaeodemographic hypothesis testing supported a scenario in which a founder effect characterized the Northern clade as it diverged from the Southern clade. Species distribution models predicted no suitable habitat for the species during the Last Glacial Maximum. Ultimately, Pleistocene glacial climates may have driven the species from the northern half of its current range, with recolonization events by members of the Northern clade as climates warmed. Density dependent processes may now maintain a narrow contact zone between the two clades.  more » « less
Award ID(s):
1754030
PAR ID:
10495179
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Amphibian and Reptile Science
Volume:
1
ISSN:
2813-6780
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Montane species endemic to the “sky islands” of the North American southwest were significantly impacted by changing climates during the Pleistocene. We combined mitochondrial and genomic data with species distribution modelling to determine whetherAphonopelma marxi, a large tarantula from the nearby Colorado Plateau, was similarly impacted by glacial climates. Genetic analyses revealed that the species comprises three main clades that diverged in the Pleistocene. A clade distributed along the Mogollon Rim appears to have persisted in place during glacial conditions, whereas the other two clades probably colonized central and northeastern portions of the species' range from refugia in canyons. Climate models support this hypothesis for the Mogollon Rim, but late glacial climate data appear too coarse to detect suitable areas in canyons. Locations of canyon refugia could not be inferred from genomic analyses due to missing data, encouraging us to explore the effect of missing loci in phylogeographical inferences using RADseq. Results from analyses with varying amounts of missing data suggest that samples with large amounts of missing data can still improve inferences, and the specific loci that are missing matters more than the number of missing loci. This study highlights the profound impact of Pleistocene climates on tarantulas endemic to the Colorado Plateau, as well as the mixed nature of the region's fauna. Some animals recently colonized from nearby deserts as glacial climates receded, whereas others, like tarantulas, appear to have persisted on the Mogollon Rim and in refugia associated with the region's famous river‐cut canyons. 
    more » « less
  2. Abstract AimThe Neotropics constitute the most biodiverse region of the world, yet its patterns of diversification and speciation differ among Neotropical areas and are not equally well understood. Particularly, avian evolutionary processes are understudied in the open habitats of temperate South America, where the role of glacial cycles is not clear. We analysed the evolutionary history of a Neotropical widespread bird species as a case study to evaluate its continental‐scale patterns and processes of diversification, with a focus on Patagonia. LocationOpen habitats of the Neotropics. TaxonVanellus chilensis(Aves, Charadriiformes). MethodsWe obtained reduced representation genomic and mitochondrial data from the four subspecies ofV. chilensisto perform a phylogenetic/phylogeographical analysis and study the evolutionary history of the species. We complemented these analyses with the study of vocalizations, a reproductive signal in birds. ResultsThe initial diversification event withinV. chilensis, approximately 600,000 years ago, split a Patagonian lineage from one containing individuals from the rest of the Neotropics. We found considerable gene flow between these two lineages and a contact zone in northern Patagonia, and showed that genomic admixture extends to northwestern Argentina. Shallower divergence was detected between the two non‐Patagonian subspecies, which are separated by the Amazon River. Vocalizations were significantly different between the two main lineages and were intermediate in their temporal and frequency characteristics in the contact zone. Main ConclusionsPatagonian populations ofV. chilensisare clearly differentiated from those of the rest of the Neotropics, possibly as a consequence of Pleistocene glaciations. A secondary contact zone in northern Patagonia with extensive gene flow among lineages appears to be the consequence of post‐glacial, northward expansion of the Patagonian populations. Future analyses focused on the dynamics of the contact zone will allow us to establish whether the species continues to diverge or is homogenizing. 
    more » « less
  3. Abstract Hybrid zones are natural experiments for the study of avian evolution. Hybrid zones can be dynamic, moving as species adjust to new climates and habitats, with unknown implications for species and speciation. There are relatively few studies that have comparable modern and historic sampling to assess change in hybrid zone location and width over time, and those studies have generally found mixed results, with many hybrid zones showing change over time, but others showing stability. The white‐throated magpie‐jay (Calocitta formosa) and black‐throated magpie‐jay (Calocitta colliei) occur along the western coast of Mexico and Central America. The two species differ markedly in throat color and tail length, and prior observation suggests a narrow hybrid zone in southern Jalisco where individuals have mixed throat color. This study aims to assess the existence and temporal stability of this putative hybrid zone by comparing throat color between georeferenced historical museum specimens and modern photos from iNaturalist with precise locality information. Our results confirm the existence of a narrow hybrid zone in Jalisco, with modern throat scores gradually increasing from the parental ends of the cline toward the cline center in a sigmoidal curve characteristic of hybrid zones. Our temporal comparison suggests that the hybrid zone has not shifted its position between historical (pre‐1973) and modern (post‐2005) time periods—a surprising result given the grand scale of habitat change to the western Mexican lowlands during this time. An anomalous pocket of white‐throated individuals in the northern range of the black‐throated magpie‐jay hints at the possibility of prehistorical long‐distance introduction. Future genomic data will help disentangle the evolutionary history of these lineages and better characterize how secondary contact is affecting both the DNA and the phenotype of these species. 
    more » « less
  4. ABSTRACT Many coastal marine species experienced Pleistocene gene flow between the North Pacific and Atlantic. Understanding historical connectivity between ocean basins should aid in predicting how regional faunas will respond to recent warming that has intensified trans‐Arctic dispersal. Wetland fauna of the Northwestern Atlantic may have survived in estuarine refugia throughout glacial cycles, or recolonised from the southern coast, North Pacific or Northeastern Atlantic. Here, we used multilocus genetic markers and historical climate data to investigate lineage distribution and connectivity among populations of the nominally cosmopolitan sea slugAlderia modesta, sampled from mudflats on both coasts of the North Pacific and North Atlantic. Mitochondrial DNA clades from European and North American populations were deeply divergent and reciprocally monophyletic; differences at seven polymorphic nuclear loci indicated prolonged absence of trans‐Atlantic gene flow. A Pacific ancestor likely first colonised the Atlantic during the marine biotic interchange of the middle Pliocene ~3.5 Ma. Both mtDNA phylogenetics and nuclear genotype assignments support repeated trans‐Arctic colonisation of the Northwestern Atlantic from the Pacific during inter‐glacial cycles; no gene flow was evident since the last glacial maximum, however. Time‐calibrated coalescent phylogenies, Bayesian skyline plots and haplotype networks all indicated recent population expansions in the Pacific and Europe, but not Northwestern Atlantic. In both the Pacific and Northwestern Atlantic, older lineages persisted in patchy refugia north of glacial margins, while a derived clade of Pacific haplotypes indicates northward post‐LGM expansion. The biogeographical history ofAlderiacontrasts with rocky‐shore taxa that were largely extirpated by glacial advance and recolonised from refugia following the last glacial maximum. Based on molecular differences and distinctions in radular and penial stylet morphology, we resurrect the nameAlderia harvardiensisGould 1870 forAlderiafrom the Northwestern Atlantic and North Pacific;A. modestarefers exclusively to European slugs. 
    more » « less
  5. Mérot, Claire; Morlon, Hélène (Ed.)
    Abstract The Rufous-collared Sparrow (Zonotrichia capensis) shows phenotypic variation throughout its distribution. In particular, the Patagonian subspecies Z. c. australis is strikingly distinct from all other subspecies, lacking the black crown stripes that characterize the species, with a uniformly grey head and overall paler plumage. We sequenced whole genomes of 18 individuals (9 Z. c. australis and 9 from other subspecies from northern Argentina) to explore the genomic basis of these color differences and to investigate how they may have evolved. We detected a single ~465-kb divergence peak on chromosome 5 that contrasted with a background of low genomic differentiation and contains the suppression of tumorigenicity 5 (ST5) gene. ST5 regulates RAB9A, which is required for melanosome biogenesis and melanocyte pigmentation in mammals, making it a strong candidate gene for the melanic plumage polymorphism within Z. capensis. This genomic island of differentiation may have emerged because of selection acting on allopatric populations or against gene flow on populations in physical and genetic contact. Mitochondrial DNA indicated that Z. c. australis diverged from other subspecies ~400,000 years ago, suggesting a putative role of Pleistocene glaciations. Phenotypic differences are consistent with Gloger’s rule, which predicts lighter-colored individuals in colder and drier climates like that of Patagonia. 
    more » « less