skip to main content


This content will become publicly available on August 10, 2024

Title: Phylogeography of the Cow Knob Salamander (Plethodon punctatus Highton): populations on isolated Appalachian mountaintops are disjunct but not divergent

Although many studies have examined how taxa responded to Pleistocene climate fluctuations in the Appalachian Mountains, impacts on high-elevation endemics of Central Appalachia are not yet understood. We use mitochondrial (ND4 & Cytb) and nuclear (GAPD) DNA sequences to investigate the phylogeography of the Cow Knob Salamander (Plethodon punctatus), a woodland species from Central Appalachian highlands thought to have origins in the Pleistocene. Data from 72 tail tips representing 25 sites revealed that the species comprises two geographically cohesive mitochondrial clades with a narrow, putative contact zone on Shenandoah Mountain. Molecular clock estimates indicate the clades diverged in the Middle Pleistocene. The population size of the Southern clade appears to have remained stable for at least 50,000 years. Despite spanning several isolated mountain systems, the Northern clade has exceptionally low genetic diversity, probably due to recent demographic expansion. Palaeodemographic hypothesis testing supported a scenario in which a founder effect characterized the Northern clade as it diverged from the Southern clade. Species distribution models predicted no suitable habitat for the species during the Last Glacial Maximum. Ultimately, Pleistocene glacial climates may have driven the species from the northern half of its current range, with recolonization events by members of the Northern clade as climates warmed. Density dependent processes may now maintain a narrow contact zone between the two clades.

 
more » « less
Award ID(s):
1754030
NSF-PAR ID:
10495179
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Amphibian and Reptile Science
Volume:
1
ISSN:
2813-6780
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Montane species endemic to the “sky islands” of the North American southwest were significantly impacted by changing climates during the Pleistocene. We combined mitochondrial and genomic data with species distribution modelling to determine whetherAphonopelma marxi, a large tarantula from the nearby Colorado Plateau, was similarly impacted by glacial climates. Genetic analyses revealed that the species comprises three main clades that diverged in the Pleistocene. A clade distributed along the Mogollon Rim appears to have persisted in place during glacial conditions, whereas the other two clades probably colonized central and northeastern portions of the species' range from refugia in canyons. Climate models support this hypothesis for the Mogollon Rim, but late glacial climate data appear too coarse to detect suitable areas in canyons. Locations of canyon refugia could not be inferred from genomic analyses due to missing data, encouraging us to explore the effect of missing loci in phylogeographical inferences using RADseq. Results from analyses with varying amounts of missing data suggest that samples with large amounts of missing data can still improve inferences, and the specific loci that are missing matters more than the number of missing loci. This study highlights the profound impact of Pleistocene climates on tarantulas endemic to the Colorado Plateau, as well as the mixed nature of the region's fauna. Some animals recently colonized from nearby deserts as glacial climates receded, whereas others, like tarantulas, appear to have persisted on the Mogollon Rim and in refugia associated with the region's famous river‐cut canyons.

     
    more » « less
  2. Premise

    We take an integrative approach in assessing how introgression and Pleistocene climate fluctuations have shaped the diversification of the coreLentagoclade ofViburnum, a group of five interfertile species with broad areas of sympatry. We specifically tested whether flowering time plays a role in maintaining species isolation.

    Methods

    RAD‐seq data for 103 individuals were used to infer the species relationships and the genetic structure within each species. Flowering times were compared among species on the basis of historical flowering dates documented by herbarium specimens.

    Results

    Within each species, we found a strong relationship between flowering date and latitude, such that southern populations flower earlier than northern ones. In areas of sympatry, the species flower in sequence rather than simultaneously, with flowering dates offset by ≥9 d for all species pairs. In two cases it appears that the offset in flowering times is an incidental consequence of adaptation to differing climates, but in the recently diverged sister speciesV. prunifoliumandV. rufidulum, we find evidence that reinforcement led to reproductive character displacement. Long‐term trends suggest that the two northern‐most species are flowering earlier in response to recent climate change.

    Conclusions

    We argue that speciation in theLentagoclade has primarily occurred through ecological divergence of allopatric populations, but differences in flowering time were essential to maintain separation of incipient species when they came into secondary contact. This combination of factors may underlie diversification in many other plant clades.

     
    more » « less
  3. Abstract

    As hybrid zones exhibit selective patterns of gene flow between otherwise distinct lineages, they can be especially valuable for informing processes of microevolution and speciation. The bumble bee,Bombus melanopygus, displays two distinct color forms generated by Müllerian mimicry: a northern “Rocky Mountain'’ color form with ferruginous mid‐abdominal segments (B.m.melanopygus) and a southern “Pacific'’ form with black mid‐abdominal segments (B.m.edwardsii). These morphs meet in a mimetic transition zone in northern California and southern Oregon that is more narrow and transitions further west than comimetic bumble bee species. To understand the historical formation of this mimicry zone, we assessed color distribution data forB.melanopygusfrom the last 100 years. We then examined gene flow among the color forms in the transition zone by comparing sequences from mitochondrial COI barcode sequences, color‐controlling loci, and the rest of the nuclear genome. These data support two geographically distinct mitochondrial haplogroups aligned to the ancestrally ferruginous and black forms that meet within the color transition zone. This clustering is also supported by the nuclear genome, which, while showing strong admixture across individuals, distinguishes individuals most by their mitochondrial haplotype, followed by geography. These data suggest the two lineages most likely were historically isolated, acquired fixed color differences, and then came into secondary contact with ongoing gene flow. The transition zone, however, exhibits asymmetries: mitochondrial haplotypes transition further south than color pattern, and both transition over shorter distances in the south. This system thus demonstrates alternative patterns of gene flow that occur in contact zones, presenting another example of mito‐nuclear discordance. Discordant gene flow is inferred to most likely be driven by a combination of mimetic selection, dominance effects, and assortative mating.

     
    more » « less
  4. Abstract

    Hybrid zones are natural experiments for the study of avian evolution. Hybrid zones can be dynamic, moving as species adjust to new climates and habitats, with unknown implications for species and speciation. There are relatively few studies that have comparable modern and historic sampling to assess change in hybrid zone location and width over time, and those studies have generally found mixed results, with many hybrid zones showing change over time, but others showing stability. The white‐throated magpie‐jay (Calocitta formosa) and black‐throated magpie‐jay (Calocitta colliei) occur along the western coast of Mexico and Central America. The two species differ markedly in throat color and tail length, and prior observation suggests a narrow hybrid zone in southern Jalisco where individuals have mixed throat color. This study aims to assess the existence and temporal stability of this putative hybrid zone by comparing throat color between georeferenced historical museum specimens and modern photos from iNaturalist with precise locality information. Our results confirm the existence of a narrow hybrid zone in Jalisco, with modern throat scores gradually increasing from the parental ends of the cline toward the cline center in a sigmoidal curve characteristic of hybrid zones. Our temporal comparison suggests that the hybrid zone has not shifted its position between historical (pre‐1973) and modern (post‐2005) time periods—a surprising result given the grand scale of habitat change to the western Mexican lowlands during this time. An anomalous pocket of white‐throated individuals in the northern range of the black‐throated magpie‐jay hints at the possibility of prehistorical long‐distance introduction. Future genomic data will help disentangle the evolutionary history of these lineages and better characterize how secondary contact is affecting both the DNA and the phenotype of these species.

     
    more » « less
  5. Abstract Aim

    Current distributions of widespread North American (NA) species have been shaped by Pleistocene glacial cycles, latitudinal temperature gradients, sharp longitudinal habitat transitions and the vicariant effects of major mountain and river systems that subdivide the continent. Within these transcontinental species, genetic diversity patterns might not conform to established biogeographic breaks compared to more spatially restricted taxa due to intrinsic differences or spatiotemporal differences. In this study, we highlight the effects of these extrinsic variables on genetic structuring by investigating the phylogeographic history of a widespread generalist squamate found throughout NA.

    Location

    North America.

    Taxon

    Common gartersnake,Thamnophis sirtalis.

    Methods

    We evaluate the effects of major river basins and the forest‐grassland transition into the Interior Plains on genetic structure patterns using phylogenetic, spatially informed population structure and demographic analyses of single nucleotide polymorphism data and address range expansion history with ecological niche modelling using locality and historic climate data.

    Results

    We identify four phylogeographic lineages with varying degrees of connectivity between them. We find discordant population structure patterns between sex‐linked and autosomal loci with respect to the relationship between the central NA lineage relative to coastal lineages. We find support for southeast Pleistocene refugia where recent secondary contact occurred during the Last Glacial Maximum and evidence for both northern and southern refugia in western NA.

    Main Conclusion

    Our results provide strong evidence for a Pliocene origin forT. sirtalisin central‐southeastern NA preceding its rapid expansion across the continent prior to middle Pleistocene climate‐mediated lineage formation. We implicate major riverine networks within the Mississippi watershed in likely repeated westward expansion events across the Interior Plains. Finally, we corroborate prior conclusions that phenotypic differences between subspecies do not reflect shared evolutionary history and note that the degree of separation between inferred lineages warrants further investigation before any taxonomic revisions are proposed.

     
    more » « less