skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modified U Slot Patch Antenna with Large Frequency Ratio for Vehicle-to-Vehicle Communication
This paper presents a single-fed, single-layer, dual-band antenna with a large frequency ratio of 4.74:1 for vehicle-to-vehicle communication. The antenna consists of a 28 GHz inset-fed rectangular patch embedded into a 5.9 GHz patch antenna for dual-band operation. The designed dual-band antenna operates from 5.81 to 5.99 GHz (Dedicated Short Range Communications, DSRC) and 27.9 to 30.1 GHz (5G millimeter-wave (mm-wave) band). Furthermore, the upper band patch was modified by inserting slots near the inset feed line to achieve an instantaneous bandwidth of 4.5 GHz. The antenna was fabricated and measured. The manufactured prototype operates simultaneously from 5.8 to 6.05 GHz and from 26.8 to 31.3 GHz. Notably, the designed dual-band antenna offers a high peak gain of 7.7 dBi in the DSRC band and 6.38 dBi in the 5G mm-wave band.  more » « less
Award ID(s):
1943040
PAR ID:
10495208
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Sensors 2023
Date Published:
Journal Name:
Sensors
Volume:
23
Issue:
13
ISSN:
1424-8220
Page Range / eLocation ID:
6108
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The Dedicated Short Range Communications (DSRC) band (5.85-5.925 GHz) allocated for vehicle-to-vehicle (V2V) communication provides limited opportunities for high speed data transfer. Alternatively, FCC plans to allocate millimeter-wave spectrum for 5G V2V communication. In this paper, we present a novel dual-band dual linearly-polarized antenna array for both DSRC and 28 GHz communications. For each band, we optimized antenna gain and number of elements to maximize range and data rate. The designed array has dual linear polarization and is fed with a simple quarter wave transformer. Due to large available connector’s size, a Wilkinson power divider is designed to combine adjacent elements. Infinite array simulation show that the array is well matched (S11 < -10 dB) from 5.85 to 6.48 GHz, and from 17.29 to 29 GHz. The realized gain at both frequency bands is neartheoretical. 
    more » « less
  2. This paper presents the design of a compact 4 × 4 antenna array suitable for unmanned aerial vehicle-to-vehicle (V2V) communication applications. The proposed antenna array can offer a narrow beamwidth, high gain, wide beam steering capability and is highly compact. The substrate material used is Rogers 5880 with a thickness of 0.2 mm, and copper is used for the patch and ground material with 0.14 mm thickness. The di-electric constant and the tangent loss of the Rogers substrate are 2.2 and 0.0004, respectively. 45° phase shifters are incorporated in the feeding paths to facilitate the beamsteering. The dimensions of the proposed antenna array are 32 × 32 × 0.48 mm 3 . The designed antenna array has the resonating frequency at 24 GHz and has a bandwidth of 0.83 GHz (3.5% fractional bandwidth). The measured far field gain of the designed antenna array is 16.7 dBi. The beamwidth derived from the array’s far-field radiation pattern is 14.6°, and the maximum beam steering range of the array is 102° along the θ axis. 
    more » « less
  3. This paper presents a wideband low-profile dual-polarized patch antenna with helical-shaped L-probe feeding (HLF) for mmWave 5G mobile device applications. Parametric studies on the HLF structure are performed to identify the optimal specifications. As a result, the optimized antenna achieves a wide bandwidth of 5.4 GHz (24.2–29.6 GHz), good isolation > 18 dB between ports, and 5.1 dBi of good peak realized gain, which is experimentally verified with a 10× upscaled antenna. In addition, various one × four phased arrays with different port configurations and beamform capabilities are designed and simulated for the peak realized gain. The designed antenna array shows a high peak realized gain of 10 dBi, high isolation of 15 dB between the ports, and a small substrate thickness of 0.048λ0 (λ0 is the wavelength of 24.25 GHz). Compared to the state-of-the-art antennas, the designed dual-polarized antenna can operate in the frequency ranges of 24.25–29.6 GHz, including n257, n258, and n261 of the 5G new radio frequency range 2. 
    more » « less
  4. This article presents the design of a planar MIMO (Multiple Inputs Multiple Outputs) antenna comprised of two sets orthogonally placed 1 × 12 linear antenna arrays for 5G millimeter wave (mmWave) applications. The arrays are made of probe-fed microstrip patch antenna elements on a 90 × 160 mm2 Rogers RT/Duroid 5880 grounded dielectric substrate. The antenna demonstrates S11 = −10 dB impedance bandwidth in the following 5G frequency band: 24.25–27.50 GHz. The scattering parameters of the antenna were computed by electromagnetic simulation tools, Ansys HFSS and CST Microwave Studio, and were further verified by the measured results of a fabricated prototype. To achieve a gain of 12 dBi or better over a scanning range of +/−45° from broadside, the Dolph-Tschebyscheff excitation weighting and optimum spacing are used. Different antenna parameters, such as correlation coefficient, port isolation, and 2D and 3D radiation patterns, are investigated to determine the effectiveness of this antenna for MIMO operation, which will be very useful for mmWave cellphone applications in 5G bands. 
    more » « less
  5. This paper presents a compact phased-array antenna for efficient and high-gain millimeter-wave-based 3D beam steering applications. The proposed antenna array consists of 2 × 2 unit cells and each unit cell is a sub-array comprising of 2 × 2 patch elements connected to microstrip lines that are co-fed by a single coaxial cable. Two 45° phase shifting lines are incorporated in each sub-array to facilitate the wide beamsteering range. The dimensions of the proposed phased array antenna are 24 × 24 × 0.324 mm 3 . Simulation results show that the proposed phased-array antenna has a resonating frequency at 58.4 GHz with an operational bandwidth from 50.1 GHz to 77.5 GHz along with a high gain of 26.8 dBi. The array exhibits a maximum beam steering range of 105° in the elevation plane and 195° in the azimuth plane with a gain variation less than 0.9 dBi. 
    more » « less